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Abstract

The characterization of soil spatio-temporal variability is essential to achieve a better understanding of complex relations

between soil properties, environmental factors and land use systems. This study evaluates the sources of soil variability in an

agricultural landscape mosaic system in the humid forest of southern Cameroon at four scales: (i) the regional level as

affected by soil-forming factors; (ii) the local level as affected by land use; (iii) the within-plot level in shifting cultivation

crop fields; and (iv) the quality control level in the laboratory. At the first three levels, the study was based on soil samples

collected throughout a 2000 km2 area, with a different sampling scheme for each level. In the laboratory, we used replicated

measurements of soil chemical properties of reference samples similar to those in the study area. Analysis of variance

(ANOVA), Principal Component Analysis, cluster analysis and variogram modelling were applied. Soil properties exhibit a

high spatial dependence even at plot level, but there is a clear regional trend explaining 30–50% of the total variation,

modelled either by elevation or geographic coordinates. Cluster analysis, landscape zoning and soil classification showed,

with more than 80% coincidence between methods, that the soils of the study area can be grouped in two main classes

(Ferralsols and Acrisols) and five subclasses. Soil pH (r2=0.68) and clay content (r2=0.51) were the best explained by

regional factors of soil variation. Geostatistical analysis showed that a closer sampling density would be required to map

regional variability which is not due to land use, regional trend or environmental covariates. Regional and local effects, and

their interaction, accounted for 70% (clay) to 85% (pH) of the total variance. The cumulative variances from field plot and

laboratory was similar to the nugget variance from geostatistical modelling. Land use practices significantly ( pb0.05)

influenced topsoil variation between plots at village level, but there was low variation within plots of about 1 ha. At

laboratory level, all variables deviated from the ideal behaviour expected of well-mixed reference samples; however, in

absolute terms both total ranges and standard deviations were quite low, except in the case of available P. Although clay

content and pH have shown to vary considerably at regional level, research for appropriate management practices for
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resource use should focus chiefly on processes and factors occurring at the local level, as influenced by a dynamical land

use system.

D 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Soil heterogeneity has been recognized for many

years as due to factors operating and interacting at

various spatial and temporal scales (Burrough, 1993).

The characterization of the spatial variability of soil

attributes is essential to achieve a better understanding

of complex relations between soil properties and

environmental factors (Goovaerts, 1998), and to

determine appropriate management practices for soil

resources use (Bouma et al., 1999). It also has

practical implications for sampling design for eco-

logical, environmental and agricultural studies (Stein

and Ettema, 2003). In addition, demands for more

accurate information on spatial distribution of soils

have increased with the inclusion of the spatial

dependence and scale in ecological models and

environmental management systems (Godwin and

Miller, 2003). This is because the variation at some

scales may be much greater than at others.

First, soils clearly differ on regional scale (Brejda

et al., 2000; Guimaraes Couto et al., 1997), and a

great variability can be expected as the result of

widely varying soil forming factors. Yost et al. (1982)

showed that soil chemical properties commonly have

spatial dependence even at regional scale.

Second, it is well-known that soil properties are

influenced by human activities at field level. Many

studies have shown a large variation of soil properties

between fields with different land uses and manage-

ment strategies on the same soil type (Kotto-Same et

al., 1997; Nye and Greenland, 1960). Van Es et al.

(1999) showed that, under certain circumstances,

tillage and temporal effects were even more signifi-

cant than field-scale spatial variability.

Third, many authors (Earl et al., 2003; Godwin

and Miller, 2003) have documented how spatial

variability of soil properties within a single field plot

affects soil performance and crop yield. However,

most soils studies, including those in tropical Africa,

use bulk sampling from the area analyzed or treated,
e.g. the agricultural field. This leaves unanswered

the question of how much soil variability is ignored

by such sampling. This leads to the next question: if

this variability could be mapped, how much

economic benefit could there be in treating small

areas of the field differently? This is the motivation

for the recent interest in precision agriculture, which

has resulted in much work on within-field varia-

bility, mostly in the context of high-technology

farming (Godwin and Miller, 2003) but also in

shifting cultivation (Mapa and Kumaragamage,

1996) and subsistence farming (Van Groenigen et

al., 2000). These studies showed that physical

properties are usually much less variable over short

distances than chemical properties.

Finally, all of the above-mentioned studies of

variability depend on the soil analytical data from

the laboratory. Variation of soil analytical data from

one batch treatment to another has generally been

ignored by the use of check (or reference) samples in

the laboratory for quality control rather than attempt-

ing to explicitly measure and model the error, which

sets a lower limit on the uncertainty of all higher

levels. Much work has been done on laboratory

quality control (Van Reeuwijk, 1998); however, our

interest here is as data users, not providers.

The fundamental question we sought to answer in

this study is: at which of these scales is soil

variability most significant in soils used for shifting

cultivation in the humid forest zone of southern

Cameroon? A related question is the degree to which

the feature space of the soil-forming factors can

explain variability, and how much can be explained

by a model of spatial dependency in geographic

space. The variation of soil properties is often

described by classical statistical methods assuming

independence of samples, at least within strata.

However, soil properties often exhibit spatial

dependence (Burrough, 1993). To determine the

nature of this spatial dependence, we used geo-

statistical methods that have previously been suc-
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cessfully applied (Goovaerts, 1998); along with

mixed approaches that combine stratification with

local spatial dependence (Brus, 1994).

The purpose of this study was to evaluate the

sources and scales of variability of soil properties in

an agricultural landscape mosaic system (ALMS)

from the regional to the laboratory level. Following

Forman (1995) we define an ALMS as the pattern

resulting from the agricultural land use system

practised by small-scale farmers, which is domi-

nated by shifting cultivation and perennial planta-

tions (cocoa, oil palm, rubber) and where spatial

and temporal heterogeneity of aggregated elements

of distinct boundaries and the mixed local ecosys-

tems are repeated in a similar form over a defined

area.
2. The study site

The study was conducted in the research area of

the Tropenbos Cameroon Programme (TCP), which

was selected as representative of the rain forest of

southern Cameroon (Foahom and Jonkers, 1992).

The site covers about 200000 ha and is located

between 2847V–3815VN and 10824V–10851VE, within
the Universal Transverse Mercator projection (UTM)

zone 32N (Fig. 1). The area is part of the southern
Fig. 1. Location of the study area and spatial distribution pattern
Cameroon plateau, a vast slightly undulating forested

region, underlain by the Precambrian Basement

Complex (Champetier de Ribes and Reyre, 1959).

Fig. 2A shows the geological map of the area, as

adapted from these authors. However, more detailed

information on the site is provided in Yemefack et al.

(in review) and Nounamo and Yemefack (2001).

The area was subdivided on physiographic basis

into five landscape ecological zones (Fig. 2B) by

Van Gemerden and Hazeu (1999) according to

altitude and soil drainage: zone A (N700 m asl),

zone B (500–700 m asl), zone C (350–500 m asl),

zone D (b350 m asl), and zone E (locally important

wetland valleys). The first four zones account for

more than 95% of the total area. The inland valley

bottom soils were not further included in this study

because they are localized, easy to identify, and

show clear contrasts with the upland soils. The

same authors grouped the well-drained soils of the

four zones in three soil types (Fig. 2B) based on

soil particle size distribution and soil drainage:

Nyangong soils (well-drained, very clayey from

topsoil), Ebom soils (well-drained, clayey from

topsoil), and Ebimimbang soils (moderately well-

drained, sandy topsoil and clayey subsoil). These

general soil types were named from nearby villages

where the soil types were first described. Thus, they

are not well-defined soil series such as defined by
of sample points (small diamonds in the sample area map).



Fig. 2. Geological map and physiographic soil map as adapted from Champetier de Ribes and Reyre (1959) and Van Gemerden and Hazeu

(1999), respectively.
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USDA Soil Taxonomy (ST) (Soil Survey Staff,

1998), but rather loose assemblages of similar soils

at approximately the family or subgroup levels of

ST. These soils are classified respectively as

Ferralsols and Acrisols according the World Refer-

ence Base for soil resources (WRB) (FAO-ISRIC,

1998).
3. Research design and methods

Four scales were studied: (i) the regional level of

soil spatial distribution as affected by regional trend,

using elevation as a proxy for soil-forming factors,

and residual spatial dependence; (ii) the local level of

soil variation as affected by land use; (iii) the within-
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plot level of soil spatial variability in shifting

cultivation crop fields; and (iv) the data quality

control level in the laboratory. Different sampling

schemes were design for each scale. Three fixed soil

layers (0–10, 10–20, and 30–50 cm) were used for all

the analyses at the first three levels. Geographic

analyses and visualizations were performed with the

gstat (Pebesma and Wesseling, 1998) and spatial

(Ripley, 1981; Venables and Ripley, 2002) packages

of the R environment for statistical computing (Ihaka

and Gentleman, 1996; R Development Core Team,

2002). Some visualizations were produced with the

ILWIS software (ITC Unit of Geo Software Develop-

ment, 2001). Cluster and Principal Components

Analyses were done in the SPLUS statistical package

(Lam, 2001).

3.1. Regional level

3.1.1. Field data collection and laboratory analysis

At this level, the study covered a total area of

about 200000 ha where 45 representative soil

profiles were described (Van Gemerden and Hazeu,

1999) using the FAO guidelines for soil description

(FAO, 1990), and sampled by genetic horizon. Soil

characteristics for each of the three fixed layers

were computed as weighted averages using genetic

horizon thickness. In addition, 102 plots from

various land use/land cover types as defined by

Yemefack et al. (in review) were sampled at the

three fixed depths. Each sample was a bulked

composite of five sub-samples taken with an Edel-

man auger in a plot diagonal basis. For both data

sets, samples were located purposively and sub-

jectively to represent soil and land use types. The

geographic coordinates of each sampling point were

recorded using the Global Positioning Systems

(GPS). The GPS was a Garmin 12XL model, with

estimated precision of F100 m in 1997 when

Instrument Selective Availability (SA) was still

enabled. After SA was disabled in 2000 all fields

were revisited with a GPS instrument precision of

F10 m. These latter readings were used for adjust-

ment and georeferencing. The elevation of each

sampling point was determined from a georefer-

enced interpolated contour map of the area (scale

1:200000). All the soil samples were analyzed in

the IRAD Soil laboratories at Ekona and Nkolbis-
son, using procedures of soil analysis described in

Van Reeuwijk (1993) and Pauwels et al. (1992).

3.1.2. Summary statistics

Since certain soil properties are more dynamic than

others, descriptive statistics were first computed on all

variables at all depths. Twelve variables showing

significant variation ( pb0.05) were then selected for

further analyses: pH-water (code in further text pHw,

units pH), organic carbon content (OC, %), available

phosphorus (Pav, ppm), calcium (Ca, cmol+ kg�1 of

soil), sum of bases (SB, cmol+ kg�1 of soil),

aluminum saturation of the exchange complex (Alst,

%), effective cation exchange capacity both in soil

(ECEC, cmol+ kg�1 of soil) and clay (ECECC, cmol+

kg�1 of clay), cation exchange capacity both in soil

(CEC, cmol+ kg�1 of soil) and clay (CECC, cmol+

kg�1 of clay), base saturation of the exchange

complex (BSP, %), and clay content (Clay, %).

Pairwise correlations were computed between layers

for the same variable and between variables for the

same layer.

3.1.3. Principal Components Analysis (PCA)

To explore the multivariate relationships between

soil properties at each depth, a Principal Components

Analysis (PCA) on the correlation matrix (i.e., stand-

ardized variables) was performed using the whole set

of soil variables at each depth separately. The two first

principal components, PC1 and PC2 were plotted on

biplots (Gower and Hand, 1996). The interpretation of

this biplot allowed the selection of two original soil

variables (clay content and pH-water) for geostatis-

tical and regional trend analysis.

3.1.4. Cluster analysis

Using the 12 selected soil variables at all three

depths, an agglomerative hierarchical cluster analysis

based on Ward’s grouping method and correlation

matrix (Webster and Oliver, 1990) was conducted to

group the 147 regional soil observations. All depths

were used in one analysis to include the effects of

vertical profile differentiation. This technique

arranges individuals (soil profiles) together into larger

and larger groups in such a way that individuals

belong to small groups, the small groups belong to

larger groups, and so on. It is based on dissimilarity

matrix of Euclidean distances between individuals.
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3.1.5. Regional trend analysis

The aim at this level is to elucidate the spatial

structure of regional soil variation, and from this to

infer explanatory factors. We selected two variables

(clay content and pH in water), identified as key

variables by PCA, which we expected to show

different structures. To minimize the effect of land

use in the regional analysis, we used the deepest (30–

50 cm) layer.

To determine the nature and strength of any

regional trend we computed the first- and second-

order linear dependence of the two variables on UTM

coordinates using both ordinary (OLS) and general-

ized (GLS) least squares, both with the spatial R

package. For GLS we fitted an approximate spatial

correlation structure to a correlogram of the target

variables (Venables and Ripley, 2002); this is used to

determine weights, thus compensating for spatial

clustering of similar values. Since calibration points

were in fact clustered in villages, this weighting could

result in a substantially different trend surface from

OLS, especially if the observations are most dense at

the highest or lowest values (Venables and Ripley,

2002). This OLS surface is effectively that used in

Universal Kriging (UK) as implemented in gstat if no

local neighbourhood is specified, although in UK the

trend is implicit in the kriging equations and not

solved for explicitly as in the trend surface analysis.

3.2. Geostatistical analyses

3.2.1. Ancillary regional variables

We computed the linear dependence of the two

variables on elevation, and their categorical associa-

tion with soil type, soil subtype, and landscape

ecological zone, all in R using the lm() (dfit linear
modelsT) method. Such associations could be used in

mapping by Kriging with External Drift (KED), given

maps of these factors.

3.2.2. Variogram analysis

To test the hypothesis that values at nearby sites are

more similar than those further apart, experimental

variograms of the two selected variables were

computed with the gstat R package using the standard

Matheron estimator (Webster and Oliver, 2001). For

the original variables, point pairs were grouped into

bins of 750 m separation, up to a range of 15500 m
(one-third of the maximum separation in the data set);

this resulted in 87–316 (median 180) point pairs per

bin. Because of the clustered sampling, separations of

6–12 km had only about half the point pairs of other

separations. Variograms of the residuals after removal

of the regional trend showed very erratic behaviour

beyond an initial sill around 5 km range, so were re-

computed with that limiting distance, with narrower

bins of 500 m separation to provide sufficient bins for

variogram modeling; this resulted in 108–199 (median

156) point pairs per bin. Variogram model classes and

initial parameters were selected by eye, and model

parameters adjusted by gstat using a least-squares fit

to the experimental variogram with empirical weight-

ing proportional to the number of point pairs and

inversely proportional to the square of the estimated

semivariance for each (Pebesma, 2001). This gives

emphasis to reliable estimation of the nugget and

close-range behaviour, to which interpolation is most

sensitive.

3.2.3. Kriging mapping

We mapped both target variables on a 250�250 m

grid over the rectangle (658000 E, 309500 N) to

(705000 E, 343000 N) in UTM zone 32N (1) from

the OLS and GLS trend surfaces, (2) by ordiQ

nary kriging (OK) using the original variogram, (3)

by universal kriging (UK) using the residual vario-

gram, and (4) by regression kriging (RK) using

simple kriging (SK) on the residuals from both the

OLS and GLS second-order trend surfaces and the

residual variogram, adding back the trend surfaces to

obtain the final interpolation. Punctual kriging

approximated the original support, namely small

fields on the order of 50�50 m, in which short-

range variability had already been removed by bulk

sampling.

3.2.4. Assessing agreement between various classi-

fication techniques

The results of the hierarchical cluster and geo-

statistical analyses were compared to landscape

ecological zoning by altitude and to the WRB soil

classification, using soil profile cross tabulation in

contingency matrices. To map the landscape ecolog-

ical zones, a map of principal elevation contours,

derived from a 1:200000 topographic map, was

interpolated and level-sliced in a Geographic Infor-
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mation System (GIS) according to the definitions of

Van Gemerden and Hazeu (1999).

The degree of agreement between each pair of

techniques was evaluated with the coefficient of

contingency C (Bonham-Carter, 1994). To compute

this, the cross-tabulation between soil profiles classi-

fied by a pair of methods was used as for a

contingency table. Let the soil profile table between

method A and method B be called matrix T, with

elements Tij, where there are i=1,2,. . .,n classes from

method B (rows of the table) and j=1,2,. . .,m classes

from method A (columns of the table). The partial

totals of T are defined as Tir for the sum of ith row, Tjc

for the sum of the jth column, Trc for the grand total

summed over rows and columns. If the two techniques

are independent of one another, with no correlation

between them, then the expected overlapping class is

given by the product of the partial totals, divided by

grand total. Thus the expected number of profiles Tij*

for ith row and jth column is

Tij4 ¼ Tir

Trc
Tjc:

Then the chi-square statistic is defined as:

X 2 ¼
Xn
i¼1

Xm
j¼1

Tij � Tij4
� �2

Tij4

¼
Xn
i¼1

Xm
j¼1

TijTrc � TirTjc
� �2

TirTjc
;

corresponding to the familiar (observed�expected)2/

expected expression, which has a lower limit of zero

when there is complete agreement between the two

techniques. As the observed number of cases becomes

increasingly different from the expected values based

on marginal totals, the chi-square increases in

magnitude. One of the commonly quoted coefficients

of association based on chi-square values is the

contingency coefficient C, which is defined as

C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2

Trc þ X 2

s
:

The magnitude of C is independent of measure-

ment units, and varies between zero (indicating no

correlation) to a maximum value less than one (for

strong correlation).
3.3. Local level

Four villages (Ebimimbang, Mvie, Ebom, Nyan-

gong) were selected (Fig. 1) to represent the physio-

graphic zones. In each village, eight land use/land

cover plot types were selected with three or four

different fields as replications. Land use/land cover

treatments were chosen based on actual agricultural

production cycles at smallholder scale and the cycling

conceptual model developed by Yemefack et al. (in

review). These treatments comprised three fallow

types with increasing duration (CF=Chromolaena

fallow, 3–5 years; BF=Bush fallow, 7–9 years; and

FF=Forest fallow, more than 15 years), one cropland

type (CL=mixed groundnut–maize–cassava crop

field), one forest mixed crop field type (FCF=forest

crop field), two cocoa plantations types (MCA=less

than 7-year-old and OCA=more than 30-year-old),

and one forest type (FV=virgin forest) as control. CL

plots were resampled at the end of the cropping phase

(CL2). No fertilizers were applied on any plot. A total

of 155 samples were collected at each depth (FCF

(12), CL1 (26), CF (12), BF (12), FF (12), FV (34),

MCA (10), and OCA (12)), of which 27 were repeat

samples (CL2).

The focus was on the effects of land use on soil

properties because of the relative homogeneity of soils

used for agriculture within each village. A one-way

analysis of variance (ANOVA) and means separation

(Tukey’s HSD) were used to investigate the effects of

land use on soil properties at each soil depth. To

differentiate this effect at village level from the effect

of soil type as represented by different villages, a

factorial ANOVA was performed modelling villages,

land use and the interaction between the two factors.

The coefficient of determination (R2) that gives the

contribution of each factor to the model was

calculated as follows: R2=(Explained sum of squares

of each factor)/(Total sum of squares), expressed in

percentage.

3.4. Within-plot level

At this level of the study, the objective was to

quantify the spatial variation of soil within an

individual field plot as compared to bulked represen-

tative sample of the same plot. Three farmers’ fields

of 0.5–0.7 ha each were selected within a 2-km radius
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in Mvie village, all on Acri-xanthic Ferralsols. Two of

these plots were under CL and the third under CF. In

order to eliminate the effect of land use as quantified

at the local level, data were standardized for certain

analyses as explained below. A hierarchical nested

quadrant sampling method was used to collect soil

samples from each field. Each of the three field plots

was divided at three stages into sampling units Sn (or

quadrant) which size varied as a function of the total

plot size A. The sample area at each stage Sn was

defined in a geometric series A/22n, for n=0 ,. . ., 3
being the stage of subdivision and S0=A, i.e. the

whole plot. From each sampling unit at each stage,

composite soil samples were collected at the three

fixed depths with an Edelman auger from five spots in

a unit diagonal basis. A total of N=75 units were then

sampled at the following four stages: S0 (N0=3), S1
(N1=12), S2 (N2=48), and S3 (N3=12). These samples

were analyzed in the IRAD soil laboratory at

Nkolbisson for pH-water, exchangeable bases and

bulk density.

Descriptive statistics were used to analyze the

spread of the data. Factorial ANOVA was used to

evaluate soil variability from each bulked sample

within and between field plots at different depths.

Nested ANOVA of the four sampling stages was

carried out on standardized variables of each soil

characteristic from each layer separately. Soil data

from the three different fields were made comparable

in each layer by adjusting the field plot mean to the

mean of the whole dataset, as follows:

YiV ¼ Yi

Y
�
i

�
4Y
�
;

�

where Yi is the value of a soil variables from field i;

Y-i is the within-field mean of Yi in field i; Y- is the

grand mean of Yi between the three fields, and YiVis
the standardized value.

3.5. Laboratory level

To evaluate baseline variation of soil analytical

data, we used replicated measurements of soil

chemical properties from reference batches of soils

similar to those in the study area. These had been used

as part of the laboratory quality control process (Van

Reeuwijk, 1998) from 1992 to 2003 at IRAD
Nkolbisson; period during which all the soil samples

used at different scale of this study were analyzed in

the same laboratory. Properties analyzed were pH-

water and KCl (n=100, 3 batches); the sum of bases,

Ca, Mg, K, Na, and the cation exchange capacity

(CEC) of the whole soil (n=72, 3 batches); organic C

(n=261, 3 batches) and total N (n=220, 3 batches);

free Fe (n=20, 1 batch); and available P (n=116, 2

batches). Since absolute values were not of interest,

all observations were standardized to deviations from

their batch mean. The range, sample standard devia-

tion, number of boxplot outliers defined as observa-

tions more than 1.5 times the inter-quartile range

above the 3rd or below the 1st quartile (Hoaglin et al.,

1983), the Shapiro-Wilk test of normality (Royston,

1982), and Bartlett’s test for homogeneity of batch

variances (Brownlee, 1965) were calculated with the

R statistical computing environment, version 1.7.1

(Ihaka and Gentleman, 1996). For variables with non-

homogenous variances, the overall sample standard

deviation was computed as the square root of the

average of the batch variances weighted by number of

replications in each batch. In the event, these weighted

standard deviations deviated by less than 1% relative

to the unweighted values. To assess the contribution

of laboratory variation to field studies, the laboratory

standard deviation was compared to the residual root

mean square from modelled experiments.

3.6. Comparing levels

According to Webster (2000) the additive nature of

variances allows distinguishing variation from two or

more sources and estimating their components by

ANOVA. The partition of the coefficients of determi-

nation was based on the fact that factorial ANOVA

partitions the total sum of squares into explained (for

each factor and interaction) and unexplained sums of

squares. To compare variances at the several levels,

we first partitioned the multiple total coefficient of

determination of factorial ANOVA model at the local

level into partial coefficients of determination for the

regional factor (as represented by villages), local

factor (land use/land cover), and their interaction.

Second, the coefficient of determination for the plot

level contribution was obtained from the nested

ANOVA (see Section 3.3) comparing the four stages

of the nested samples. Then, we obtained the ratio of
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explained sums of squares (for each factor i.e. region,

local, and their interaction) over the total sum of

squares, as a measure of the proportion of the total

variation that has been explained by each factor.
4. Results and discussion

4.1. Spatial distribution of sampling points

Fig. 1 shows the distribution of sample points

within the study area. Most of the points were

purposely clustered near roads and in the four selected

villages. The minimum distance between sampling

points was about 30 m; while the maximum distance

from a point to its first nearest neighbour was about 1
Table 1

Summary statistics of the original soil variables (sample population, n=14

pH OC,

%

P.av,

ppm

Ca, cmol+

kg�1

SB, cmol+

kg�1

Al.st % EC

0–10 cm

Min 3.20 1.04 2.00 0.16 0.54 0.00 2.

Mean 4.59 2.98 7.84 2.31 3.75 19.17 6.

Median 4.40 2.70 7.00 1.38 2.83 19.15 6.

Max 7.60 10.90 29.00 10.71 15.89 53.00 16.

Std Dev 0.88 1.50 4.73 2.39 3.19 13.69 2.

SE mean 0.07 0.12 0.39 0.19 0.26 1.13 0.

Skewness 1.17 1.92 2.06 1.75 1.73 0.25 0.

Kurtosis 0.81 6.51 5.07 2.41 2.64 �0.55 0.

CV% 19.20 50.20 60.40 104 85.10 72.40 40.

10–20 cm

Min 3.30 0.30 0.50 0.01 0.15 0.00 1.

Mean 4.58 1.40 2.98 0.76 1.54 32.48 5.

Median 4.40 1.30 3.00 0.52 1.11 31.42 5.

Max 7.30 3.70 8.00 3.55 5.53 97.14 24.

Std Dev 0.83 0.72 1.56 0.69 1.18 22.39 2.

SE mean 0.06 0.06 0.13 0.06 0.10 1.84 0.

Skewness 1.30 0.95 1.10 1.76 1.84 0.56 2.

Kurtosis 1.21 1.02 1.16 2.79 3.02 0.35 14.

CV% 18.10 50.20 52.50 90.60 76.80 69 42.

30–50 cm

Min 3.50 0.20 0.00 0.01 0.13 0.00 1.

Mean 4.75 0.81 1.34 0.57 1.20 35.07 4.

Median 4.70 0.84 1.00 0.36 0.83 34.00 4.

Max 6.80 1.70 3.00 2.81 5.65 120.9 12.

Std Dev 0.64 0.32 0.66 0.60 1.08 23.83 1.

SE mean 0.05 0.03 0.06 0.05 0.09 1.96 0.

Skewness 1.05 0.08 0.99 2.13 2.33 0.92 0.

Kurtosis 1.58 �0.44 0.67 4.00 5.34 1.29 2.

CV% 13.50 39.50 49.70 105 90.20 67.30 35.
km, for an average of 515 m to nearest neighbour. All

the land units represented in the area were sampled,

and the clusters are well distributed across the study

area.

4.2. Regional variability of soils

4.2.1. Summary statistics and spatial data structure

Table 1 summarizes the statistics of the 12 soil

variables studied at regional scale. All showed a

positive skewness with coefficients varying between

0.08 and 2.5. So that the mean of each variable is

slightly greater than the median. However, no trans-

formation was done on the original dataset since

ANOVAs are rather insensitive to slight departures

from normality (Webster, 2000).
7)

EC soil, ECECC soil,

cmol+ kg�1

CEC soil,

cmol+ kg�1

CECC soil,

cmol+ kg�1

BS,

%

Clay,

%

04 8.20 2.98 10.30 3.7 9.5

98 27.19 11.20 40.29 38.5 31.7

71 20.82 10.05 35.64 26.5 30.0

21 118.31 29.00 146.2 162.4 72.0

83 19.24 5.09 20.3 33.1 13.9

23 1.58 0.42 1.67 2.7 1.15

89 2.32 1.15 1.84 1.4 0.96

84 5.80 1.58 4.94 1.7 0.01

60 70.80 45.50 50.30 86 46.50

29 5.00 1.60 5.81 2.4 9.5

43 15.57 7.51 21.70 28.0 36.8

14 14.31 7.00 19.80 16.1 36.0

44 50.92 22.00 62.86 133.4 75.0

73 6.20 3.63 9.48 28.3 14.6

23 0.51 0.30 0.78 2.3 1.2

51 1.80 0.92 1.45 1.66 0.23

97 6.76 1.028 3.54 1.29 �0.36

10 36.60 46.70 43.70 112 39.80

30 4.42 1.00 4.00 2.4 16.0

76 10.95 6.93 16.1 21.9 44.7

51 10.17 6.60 15.3 12.1 45.0

87 22.19 14.00 31.3 106 80.0

79 3.61 2.71 6.19 22.62 12.9

15 0.29 0.22 0.51 1.86 1.06

99 0.98 0.30 0.59 1.74 0.16

01 0.98 �0.22 �0.07 2.25 �0.06

20 32.20 38.20 38.60 103 28.80
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Two representative properties were selected to

compare layers: clay as a percentage of total fines

(physical property) and pH-water (chemical property).

Coefficients of determination, calculated as the square

of the correlation coefficient, are moderate (0.57–

0.88) for pH and high (0.81–0.90) for clay. Adjacent

layers have higher correlations than the surface and

deepest layers (0.57 for pH and 0.81 for clay). This

difference can be partly explained by the higher

influence of land use on topsoil than the subsoil. This

effect is likely greater for pH (effect of wood ash from

clearing and burning) than on clay content, which is

largely pedogenetic.

One-way ANOVA by depth shows a highly sig-

nificant difference in clay content among layers, with

the three layers averaging 31.3%, 36.8%, and 44.7%,

respectively; however, pH did not differ among

depths. Two-way factorial ANOVA (by depth and

soil type) showed no effect of soil type on this depth

relation for clay content; however for pH there was a

highly significant interaction, meaning that the pH

variation with depth differed among soil types. This

suggests that Acrisols which have high pH values may

be less sensitive to ash effects compared to acid

Ferralsols, especially in the surface layer. Bartlett’s

test for homogeneity of variances could not reject the

null hypothesis of homogeneous variances for clay

content ( p=0.30), but this was rejected ( pb0.001) for

pH; variance was significantly lower in the subsoil,

most likely due to management effects in the surface

soil.

Fig. 3 shows geographic postplots of clay content

and pH in the 30–50 cm layer. There is a clear first-

order regional trend, which was confirmed by the

fitted OLS surface (multiple R2 of 0.50 and 0.39,

respectively). The principal azimuth for this trend,

computed from the arctangent of the two coefficients,

was approximately 1258 for both variables. Clay

content increases while pH decreases along this axis.

Fitting a second-order OLS surface improved the

goodness-of-fit to a multiple R2 of 0.52 and 0.51,

respectively. The second-order GLS trend surface,

which accounts for spatial correlation between cali-

bration points, was almost identical both in coeffi-

cients and fit (R2=0.51) for clay content but

substantially different, and with a much poorer fit

(R2=0.31) for pH. The spatial covariance structures

for the GLS equations were in both cases spherical
with 0.3 proportion of nugget effect and ranges of

20.5 and 15 km, respectively, at which ranges the

experimental correlograms first showed no correla-

tion. These regional trends explain only about one

third to one half of the total variation, the rest to be

explained by local spatially dependent processes. A

mixed interpolator is indicated for mapping.

4.2.2. Principal Components Analysis (PCA)

Table 2 shows the characteristics of the first five

PCs from the PCA of the standardized values of

twelve soil variables for the three soil layers. In all

cases these explain over 90% of the total variation. In

the topsoil, the first two components explain 75%;

only about 65% is explained for the deeper layers.

This discrepancy indicates that management effects,

concentrated in the topsoil (especially the ash effect),

tend to increase the multiple correlations between soil

properties.

Fig. 4 shows biplots of the first two PCs for the

three layers separately. The first axis, which explains

about half of the total variation, by definition shows

the maximum single discrimination of the soil

variables. For all three layers this axis is controlled

by clay content and pH at opposite ends. On this axis,

soil parameters related to soil solution and cation

mobility such as soil reaction, base saturation,

exchangeable bases are represented by vectors pro-

jected in the left (negative) side of the graphs.

Properties related to the capacity of soil adsorption

complex to retain and exchange cations with soil

solution (e.g. CEC) are projected around the zero of

the first axis, but dominate the second axis. Soil

properties linked to the magnitude of the adsorption

complexes (clay, organic carbon) are projected on the

right (positive) side of the graphs. The second

component, by definition orthogonal to the first, and

here explaining about 20% of the total variation,

explained mostly the interaction between the two

main controlling factors of the first component,

namely magnitude of the adsorption complex and

soil solution. A number of observations plotted near

the origin of the biplot are not well differentiated by

the two first PCs.

4.2.3. Numerical classification of soil profiles

Cluster analysis has been successfully applied in

soil survey to create classes within which the



Fig. 3. Post plots of clay content and pH water at 30–50 cm depth showing regional trend.
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members are generally alike and substantially differ-

ent from the members of the other classes (De

Gruijter, 1977; Webster and Oliver, 1990). The idea

is statistically to minimize within-group variability

while maximizing among-group variability, in order to

produce relatively homogeneous groups. We used a

hierarchical numerical classification system to reveal

the various levels of similarities and allow a variable

number of groupings. Fig. 5 shows the dendrogram

resulting from the application of Ward’s method on
the correlation matrix of 12 soil parameters collected

in three different soil depths. The 147 soil profiles

were aggregated in two groups at the highest level.

Each group was subdivided in two subgroups at the

next level. Further multiple subdivisions occurred

within the four subgroups as the dissimilarity

decreases; however these groups show little differ-

entiation and are hard to interpret. Classes at the first

two levels showed a good correlation with the WRB

groups (three, at the first level) and subgroups (seven,



Table 2

Characteristics of the first five Principal Components (PC) from the

PCA of the standardized values of twelve soil variables

PC 1 PC 2 PC 3 PC 4 PC 5

0–10 cm

Eigenvalue 2.47 1.7 1.01 0.88 0.68

Proportion of variance (%) 50.7 23.8 8.5 6.5 3.9

Cumulative proportion (%) 50.7 74.5 83.0 89.5 93.4

10–20 cm

Eigenvalue 2.30 1.57 1.22 1.14 0.70

Proportion of variance (%) 44.1 20.6 12.4 10.9 4.1

Cumulative proportion (%) 44.1 64.7 77.1 88.0 92.1

30–50 cm

Eigenvalue 2.25 1.62 1.22 1.02 0.84

Proportion of variance (%) 42.1 22.0 12.4 8.6 5.9

Cumulative proportion (%) 42.1 64.1 76.4 85.0 90.9
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at the third level), and landscape ecological zones (see

section on the relationship between the classification

techniques). Since the clusters at both levels exhibited

a strong relationship with soil classification, a map of

soil classes as defined by the WRB is feasible and

would explain a large proportion of the total soil

variation in the area. In a study in the USA, Adams et

al. (1992) also found that classes formed by cluster

analysis were similar to Soil Taxonomy classes.

Further detailed study of cluster groupings may also

reveal important pedological relationships that are not

apparent when pedons are classified by landform

alone (Young and Hammer, 2000).

4.2.4. Geostatistical analysis and soil mapping

4.2.4.1. Ancillary regional variables. Elevation in the

study region generally increase towards the southeast

(azimuth 1228, first-order surface R2=0.90), so it is

not surprising that both clay and pH are predicted

from elevation with almost the same precision

(R2=0.48 and 0.44, respectively) as from UTM

coordinates. However, unlike the regional trend, the

relation with elevation suggests that local relief

differences, which are the order of 100 m, should be

associated with differences on the order of +4.5% clay

and �0.2 pH units. We have no hard evidence for

such relations, although soil surveyors do observe

local colluviation of coarser material on toeslopes.

Therefore we decided to use the best trend surface on
coordinates to estimate residuals for geostatistical

analysis.

4.2.4.2. Experimental variogriams. Fig. 6 shows the

experimental variograms with fitted spherical vario-

gram models and their parameters, for both original

variables and residuals after removing the second-

order OLS regional trend surface. The low number of

points and clustered sampling resulted in erratic

variograms that were difficult to model, although

there is clear spatial dependency. The variogram of pH

shows dependence to about 6 km, whereas that for

clay shows an erratic structure, unbounded within the

study area. The residual variograms from OLS were

well-modelled by spherical models with dependence

up to only 2.3 (clay) to 2.7 (pH) km, showing that the

regional trend accounted for the long-range depend-

ence in the original variograms. Residual variograms

from the GLS surface were almost identical, although

the residuals themselves were quite different espe-

cially for clay. After removal of the trend, the nugget

(unexplained variance) in the residual variograms was

64% (clay) and 32% (pH) of the short-range variance.

This means that kriging interpolation will have a high

uncertainty even at short ranges, even for the most

stable soil properties (i.e. at depth), and even on a

relatively large support (farmer’s field).

RK from the OLS trend surface and UK computed

by gstat with no local neighbourhood gave almost

identical predictions. RK from the GLS and OLS

trend surfaces were very similar for clay but quite

different for pH, because of the substantial difference

in trend surfaces for the latter property. Fig. 7 shows

interpolation maps made by OK, UK and RK from

GLS, as well as the second-order GLS trend surface,

for the two soil properties. The relative effects of the

regional trend and local samples can clearly be seen,

as well as the effect of including the trend in the

interpolation, especially away from the sample points.

In the case of pH, OK predicts with the global mean

away from the point clusters, which is not realistic,

whereas RK uses a trend but this clearly is not

respected near the clusters. In the case of clay, OK

gives a smooth prediction away from the clusters,

because of the long-range variogram, but the apparent

trend does not agree with that shown by RK. Here the

RK trend is mostly respected near the clusters, with

some local discrepancies. Thus, neither interpolation



Fig. 4. Biplots of PCs 1 and 2 at the three sampling depths (a=Acrisols, f=Ferralsols).
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Fig. 5. Dendrogram of 147 soil profiles grouping based on 12 soil parameters measured at the three soil depths.

Fig. 6. Variograms modelling from the original values and residuals of clay content and pH in water within 30–50 cm soil depth. Variogram

parameters on each plot; spherical models except for original clay 30–50 cm, which is unbounded linear.
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Fig. 7. Interpolations for clay content and pH of 30–50 cm layer, made by ordinary kriging (OK), universal kriging with a second-order trend

(UK2), a generalised least squares second-order trend surface (GTS2), and regression kriging using residuals from this surface (GRK2).
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is satisfactory away from the sampled villages; within

villages the trend is minimal, so that OK is preferred.

The OK map for clay shows a clear grouping of the

four villages in three soils classes related to Van

Gemerden and Hazeu’s classification (1999): Ebi-

mimbang goup, Ebom and Mvie groups, and Nyan-

gong. The UK and RK maps of pH tended to group

the four villages only into two classes similar to WRB

classification: Ebimimbang group (Acrisols), and

Mvie-Ebom-Nyangong group (Ferrasols).

These results of geostatistical analysis suggest that

there is a possibility for pedometric mapping of soil of

the area. However, for an accurate digital soil map,

other mapping tools such factorial kriging analysis

(Goovaerts, 1992), wavelet analysis, neural networks,

fuzzy set, etc. (McBratney et al., 2003) may provide a

better insight into the multi-scale structure of variation

than revealed with our approaches (global trend and

local variation). Although there seems to be no

substitute for a denser sampling network, especially

for variables with relative short range dependence

such as pH.

4.2.5. Factors controlling soil variability at regional

level

In the search of factors that control the distribution

pattern of soils of the forested zone of south

Cameroon, three soil forming factors (rainfall, geol-

ogy and elevation) were analyzed in relation to soil

variability. Rainfall analysis was based on the

literature review, while geology and elevation were

compared to cluster analysis and WRB soil groups

using soil profile cross tabulation in contingency

matrices as explained in the methodology section.

The distribution pattern of rainfall over the TCP

area over a 5-year monitoring period showed a clear

non-uniform pattern (Ntonga et al., 2002). The central

part of the area where the altitude increases from

about 200–600 m asl received a distinctly higher

annual rainfall (2115–2458 mm) than the western

lowlands (1816 mm) and the eastern highlands (1985

mm). They ascribed these rainfall variations to the

orographic effect. The spatial pattern of this rainfall

distribution is quite similar the soil distribution

pattern, with more weathered and more acidic soils

found at the higher elevations with greater rainfall.

The 1:500000 geological map (Champetier de

Ribes and Reyre, 1959) did not show a strong
relationship with soil distribution pattern. The whole

area falls into the basement complex (Fig. 2A)

characterized by acid metamorphic rocks (migmatite,

gneiss, micaschist) traversed by intrusions of potassic

alkaline syenite and basic rock dykes. Some of the

unexplained variability may be due to these local

intrusions. However, the C coefficient of correlation

between geological map units and the WRB soil

groups was the lowest (66%). According to Zech

(1993), soil formation in the humid tropics is often so

advanced that the relationship between rock and soil

properties are no longer clearly distinguishable, and

that may be the case in this study region. However, the

NNE–SSW overall orientation of boundaries between

soil and physiographic zones follows the general

orientation of the geological structures, having a C

coefficient of 80%.

The four upland landscape ecological zones

defined by altitude explained 50% and 49% of the

total variance, respectively, for the two representative

variables (clay content and pH in water). That is, a

simple elevation zonation is more explanatory than

linear regression on the continuous predictor. Separa-

tion into three WRB reference groups (Ferralsols,

Acrisols, and Cambisols) was not so successful, but

still explained 33% and 44% of the variance in the

two properties, respectively. Separation into 11 WRB

second-level groups improved the explanatory power

to 50% and 51%, respectively. This shows that

hierarchical soil classification was moderately suc-

cessful in predicting these properties.

4.2.6. Relation between classification techniques

A global correlation of soil profile grouping

between three classification methods (WRB, cluster

analysis, and physiographic zoning) was used to

assess the agreement of each pair of methods. Table

3 shows the different contingency tables and the

coefficients C of a global correlation of each pair of

techniques. The output level of each method was also

assessed in order to evaluate their relative precision.

The global correlation of classes between the pairs of

techniques is generally high (78–89%). The highest

agreement was between the WRB and the physio-

graphic zoning of the study area, suggesting that the

physiographic basis of soil inventory can be success-

fully applied for soil mapping in this vast forested

undulating region. The numerical classification sys-



Table 3

Contingency table showing the number of soil profile classification by each pair of classification methods

WRB=World Reference Base for soil resources: Soil Groups (FR=Ferralsols, AC=Acrisols, CM=Cambisols), Soil Units (Axf=Acric-ferric

Ferralsols, Xf=xanthic Ferralsols, Ha=Haplic Acrisols, Fpa=Ferralic and plinthic Acrisols, Fc=Ferralic Cambisols); A=Total.
Physiographic zones A (N700 m asl), B (500–700 m asl), C (350–500 m asl), and D (b350 m asl).

Cluster Classes (see Fig. 5); Coefficient C=Contingency coefficient.
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tem correlated somewhat less with the other methods.

This correlation was substantially improved by using

both the lower soil unit level of WRB and the third

subdivisions of cluster. The C coefficient between

WRB and numerical classification increased from 0.78

(with three WRG groups and three cluster classes) to

0.83 (with five WRB units and seven cluster classes).

Similarly, C coefficient between WRB and physio-

graphic zoning (four zones) increased from 84% (with

three WRG groups) to 89% (with five WRB units).

However, between numerical classification and phys-

iographic zoning, C coefficient increased only from

82% (with three cluster classes) to 83% (with five and

seven clusters classes). We conclude that all three

classifications give similar information at both levels

of detail.

All these methods have shown that soils of the

study area vary substantially and most of the variation

is controlled as in many other cases (Brejda et al.,

2000; Guimaraes Couto et al., 1997; Jenny, 1980;
Odeh et al., 1994; Yost et al., 1982) by landscape-

scale soil forming factors. This dependence suggests

that (i) at semi-detailed level, soil of the area can be

usefully mapped automatically by a wise integration

of all the factors to regionalized variables; (ii) any soil

management such as recommendations for fertilizer

application and soil conservation measures should be

region-specific.

4.3. Soil variability at the local level

Summary statistics for seven soil variables are

shown in Table 4. Most of these soil variables showed

a much higher variation at the shallowest soil depth

(0–10 cm). This supports the hypothesis that the effect

of land use on soil properties is most effective near the

soil surface (Yemefack and Nounamo, 2000). Avail-

able P was quite variable and poorly structured,

especially in the topsoil. In several cases the total

variation, as measured by the sample standard



Table 4

Summary statistics of soil properties at local scale (village level)

PH

water

Total acidity

(cmol+ kg�1)

Sum bases

(cmol+ kg�1)

Base saturation

(%)

Available

phosphorus (ppm)

Clay

content (%)

Bulk density

(g/cm2)

0–10 cm

Minimum 3.2 0.04 0.6 4 2 14 0.63

Mean 4.9 2.35 5.3 53 10.5 29 1.12

Range 5.0 2.11 22.1 148 84.6 63 0.88

Maximum 8.2 9.15 22.7 152 86.6 67 1.51

Standard deviation 1.08 2.31 4.1 34 11.6 13 0.19

SE mean 0.09 0.19 0.33 2.7 0.93 1.04 0.02

Skewness 1.06 1.11 1.2 0.36 4.37 0.45 �0.34

Kurtosis 0.43 0.62 1.3 �0.83 22.26 �0.10 �0.28

CV% 22.2 98.5 77.9 64.5 110 45 17.1

10–20 cm

Minimum 3.3 0.04 0.33 2 1 16 0.91

Mean 4.8 3.18 2.25 36 3.4 35 1.29

Range 4.5 14.14 12.65 103 11.3 64 0.77

Maximum 7.8 14.18 12.98 105 12.3 70 1.68

Standard deviation 0.92 2.4 2.05 32 1.74 14.3 0.17

SE mean 0.07 0.19 0.17 2.5 0.14 1.15 0.014

Skewness 1.22 1.03 2.59 0.95 1.94 0.08 �0.09

Kurtosis 0.78 2.54 8.92 �0.69 5.97 �0.56 �0.40

CV% 19.4 75.3 91.2 87.1 51 41.3 13.1

30–50 cm

Minimum 37 0.08 0.33 4 1 20 Nd

Mean 4.9 2.9 1.4 27 1.6 43 Nd

Range 3.9 6.8 5.1 127 6.2 71 Nd

Maximum 7.6 6.9 5.4 131 7.2 77 Nd

Standard deviation 0.73 1.62 1.16 27 1.04 14 Nd

SE mean 0.06 0.14 0.10 2.3 0.09 1.23 Nd

Skewness 1.35 �0.35 1.82 1.7 2.48 �0.29 Nd

Kurtosis 1.68 �0.70 2.60 2.1 7.74 0.15 Nd

CV% 14.9 56 83.4 98.7 64.8 33.1 Nd

N=155 for 0–10 and 10–20 cm layers, and N=130 for 30–50 cm depth.

nd=not determined.
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deviations and ranges, was higher than at regional

level, probably because the local level plots included

more variation in land use.

Analysis of variance and separation of significant

means showed that most soil variables were sensitive

to the effects of land use type. Those that showed the

highest responses are presented in Table 5 as a matrix

comparing on pairwise basis soil properties variations

amongst land use types, for each soil depth. The

number of soil variables in each cell of this table

showed that most variation occur in the first soil layer

and decrease with depth. Cropping treatments (FCF,

CL, CL2) showed significant differences (with CLN

FCF) with other treatments (FV, FF, BF, CF, MCA,
OCA) for all the nine soil properties. Only those soil

properties that are highly influenced by ash from

burned vegetation (i.e. pH, total bases, and total

acidity) showed a significant effect due to land use in

the deepest layer. This suggests that the process of ash

disintegration leads to rapid leaching and vertical

movement of cations. Cattle et al. (1994) reported that

pH, electrical conductivity, organic matter and soil

acidity were the most affected by clearing and

cultivation on an Rhodoxeralf in Australia. These

changes, although of short duration, appear to be

advantageous to improve several facets of chemical

soil fertility, while creating also a more uniform

environment in which to grow crops.



Table 5

Comparison matrix of significantly affected soil properties amongst land use/land cover types

FCF=Beginning of Forest crop Field; CL=Beginning of mixed food crop field; CL2=End of mixed food crop field; CF=Chromolaena

Fallow=3–5 years old; BF=Bush Fallow=7–9 years old; FF=Forest FallowN15 years old; FV=undisturbed Virgin Forest; YCA=Young mature

cocoa plantation=5–7 years old; OCA=Old Cocoa plantationN30 years old. pH=pH water, Pav=Available phosphorus, Ca=Calcium,

Mg=magnesium, SB=Sum of bases, SA=Total acidity, BS=Bases saturation percentage, Clay=Clay content, Bd=Bulk density, nd=not

determined.
1=significant difference at 0.05 confidence between the two land cover types.
2=significant difference at 0.01 confidence between the two land cover types.
3=significant difference at 0.001 confidence between the two land cover types.
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This larger soil variation in the surface layer was

further confirmed by the results of factorial ANOVA

(Fig. 8) (modeling land use and soil type at the three

depths separately) from which the coefficient of

determination of each soil variable was computed as

the ratio between explained variance and the total

variance to evaluate the contribution of land use effect

on soil variability at each depth. For most soil

variables, the contribution to total variance from the

shallowest soil layer was 45–60%, followed by 20–

35% in the second layer, and less than 15% in the

deepest layer. However, for clay content, although

land use showed a significant ( pb0.05) effect, there

was not a clear difference between the contributions

of the soil depths.

The results at local level showed that traditional

agricultural land use systems in southern Cameroon

are also a major source of temporal variability of soil

properties and processes. From clearing a portion of

forest land for cropping to the formation of the

secondary forest during the fallow period and/or the

establishment of perennial agro-forests, soil constitu-

ents undergo important changes, especially in the

topsoil. However, the magnitude of these changes

varies from one property to another. Paz-González et

al. (2000) reported a similar situation on an umbric

topsoil horizon in Northwest Spain, and concluded

that agricultural land use changes the magnitude, the
Fig. 8. Contribution (in %) of land use practices to soil properties variation

water; Ca=calcium; Sum B=total bases; Sum A=total acidity; BS%=bases

Clay=clay content).
diversity, and the pattern of soil spatial variability for

most soil properties related to soil fertility and texture.

These results may help field researchers in site

selection to overcome the problem often faced with

contractictory results (Van Es and Van Es, 1993)

where there are clear differences in crop yields

between plots but no significant treatment effect.

4.4. Sampling variability within field plots

Summary statistics are presented in Table 6 for the

three properties (pH, bulk density, and bases) stand-

ardized to plot means. Frequency distributions are

near-normal with close means and medians. Total

variation was low compared to the regional (Table 1)

and local (Table 4) levels, as shown by the standard

deviation in the topsoil for bulk density (0.06 against

0.19 at local level), for pH (0.24 against 1.08 at local

and 0.88 at regional levels), and for sum of bases

(0.23 against 4.10 at local and 3.19 at regional level).

Results are similar for the other layers. Thus the plot

level is from about 5–30% as variable as the higher

levels.

Factorial ANOVA showed that there were sig-

nificant differences between the three soil layers and

between the three field plots for all three properties.

By far the largest effect was between layers; e.g. for

bulk density, 86% of the total variance was ex-
for the soil variables significantly different at pb0.05 (pHw=pH in

saturation percentage; Pav=available phosphorus; Bd=Bulk density;



Table 6

Descriptive statistics of soil properties within the field plots (using adjusted data) (n=75)

Min Mean Median Max Std dev SE mean Skewness Kurtosis CV%

0–10 cm

pH Water 4.03 4.45 4.43 5.34 0.24 0.027 0.88 2.11 5.3

Sum Bases 0.95 1.56 1.56 2.11 0.23 0.26 �0.14 0.52 14.4

Bulk density 0.94 1.13 1.13 1.29 0.06 0.007 �0.24 0.70 5.5

10–20 cm

pH Water 4.12 4.54 4.52 5.42 0.21 0.024 1.75 5.36 4.6

Sum Bases 1.06 1.91 1.88 3.35 0.45 0.052 0.87 1.19 23.5

Bulk density 1.26 1.42 1.43 1.54 0.05 0.006 �0.94 2.41 3.5

30–50 cm

pH Water 4.41 4.70 4.61 5.69 0.23 0.026 2.12 5.41 4.8

Sum Bases 1.09 1.74 1.70 2.92 0.34 0.039 1.78 1.78 19.4

Bulk density 1.39 1.50 1.49 1.61 0.04 0.039 0.26 0.26 2.7
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plained by the layers. This agrees with the results of

the regional analysis (Section 4.2). Field plots

explained a much smaller, but still significantly

different, proportion of the variance (e.g. 2.6% for

bulk density); these differences were comparable to

the effect of land use as quantified in Section 4.3. The

two field plots under cropping (CL) were similar and

both quite different to the one under Chromalena

fallow (CF). Because of this significant difference

between the three fields, values were standardized to

per-plot means as described in Section 3.3, in order to
Table 7

Variance components for soil properties within field plot at three soil dep

Stage Plot size

(m2)

N 0–10 cm

pH water

Variance

component

% of

variance

1 6400 3 0.008 5.6

2 1600 12 0.028 20.8

3 400 48 0.074 54.1

4 100 12 0.026 19.5

10–20 cm

1 6400 3 0.070 33.0

2 1600 12 0.044 20.8

3 400 48 0.075 35.4

4 100 12 0.023 10.8

30–50 cm

1 6400 3 0.066 39.5

2 1600 12 0.031 18.3

3 400 48 0.064 38.3

4 100 12 0.006 3.8
make the three fields comparable for the nested

ANOVA.

The results of nested ANOVA for the three

standardized soil properties at the three soil depths

are given in Table 7. The largest component of

variance for the surface layer (0–10 cm) derived from

the 400 m2 area (equivalent to 20 m spacing) for the

three soil properties, and accounted for 40–55% of the

total variance of the whole plot. The larger and

smaller plot sizes (1600 and 100 m2) accounted for

about 20% each. In the lower layer of the soil profile,
ths, from nested analysis of variance

Sum bases Bulk density

Variance

component

% of

variance

Variance

component

% of

variance

0.0093 6.3 0.00022 2.4

0.0296 20.1 0.00109 11.7

0.0586 39.9 0.00506 54.6

0.0493 33.7 0.00289 31.3

0.0094 3.5 0.00055 8.1

0.0878 32.2 0.00102 15.1

0.0785 28.8 0.00358 52.9

0.0973 35.6 0.00162 23.9

0.0173 4.0 0.0002 3.2

0.0979 22.6 0.0003 5.9

0.0895 20.7 0.0020 38.9

0.2288 52.8 0.0025 52.0
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the variance components were approximately equal

for the three largest size stages for pH. The same

result was found for the sum of bases and bulk density

with the three smaller size stages. In addition, the

contribution of the largest plot to variance increased

with soil depth (for pH) and did not change for the

sum of bases and bulk density. This can best be

appreciated from Fig. 9 where the accumulated

variance components are plotted against spacing.

The variance of bulk density, pH and the sum of

bases increased substantially with spacing and leveled

off (i.e. reached a sill) around 40 m (1600 m2) for the

0–10 cm layer. This corresponds to the total variance

of each soil property at this depth. Beyond the

distance of 40–60 m (equivalent to the geostatistical

range) the sampling units were no longer spatially

correlated for bulk density and the sum of bases. For

the 10–20 and 30–50 cm layers, accumulated varian-

ces for bulk density and the sum of bases followed the

same pattern as for the 0–10 cm layer, whereas pH

showed increasing variance with plot size, indicating

spatial correlation at distances greater than the

experimental area. This is in line with the results of

PCA and geostatistcal analyses in Section 4.2 where

pH showed with clay content the longest-range spatial

dependence, with a modelled range of 6400 m.

These graphs also show that at shorter distances the

variance of pH showed a slight decrease with depth

(0.026 at the surface layer to 0.006 at the lowest

depth), while the sum of bases showed instead an

important increase with depth (from 0.05 at the

surface layer to 0.23 at the lowest depth). The total

variance from bulk density was in general very low in
Fig. 9. Accumulated variance soil properties with the plot size plotted as
the three layers at short range. The decrease of local

variation occurring at scales finer than the smallest

sampling interval can be explained for pH by the

relative homogeneity of the subsoil solution, out of

reach of land use effects. The reverse behavior for the

sum of bases is difficult to explain.

The similarity between these graphs and vario-

grams (Davidson and Csillag, 2003; Webster and

Oliver, 1990) suggests the existence of a spatial

dependence in these soils at plot level, showing that

precision agriculture would need to take this short-

range variability into account. Subsistence farmers

may already be taking this variability into account as

they use surface cues (colour, amount of ash, etc.) to

place individual plants within a shifting cultivation

plot (Florax et al., 2002; Nounamo and Yemefack,

2001). This variance is not significant at the scale of

the actual farmers’ field plots treated as a whole (0.5–

1.2 ha), and is minimized by the actual soil sampling

procedure (composite bulk sampling) in use.

The observed low level of soil variability at field

plot scale is probably due to (i) the current sampling

strategies based on composite soil samples, and (ii)

the plot size (around one hectare) commonly in use in

the area. As the plot size may increase with changing

land use practices, the within-field variance might

considerably increase as well, as predicted by the

regional variogram. The plot variogram can be seen as

a fine resolution (dmagnificationT) of the regional

variogram; the regional nugget effect (e.g. 0.05 for

pH) is resolved into a true nugget at a very short range

(here, 20 m) and increasing variability at plot

dimensions. We could not compute the variograms
a function of the square root of the plot area (m) at three depths.
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for within-field plots to strengthen this link because of

the limited number of available samples (25) at each

single plot per depth.

4.5. Laboratory level

Table 8 summarizes the statistics of the IRAD soil

laboratory quality control samples for all 11 soil

properties. The standardized variables showed sym-

metric and compact distributions; however five had

boxplot outliers representing 0.3–15% of the sample.

Six variables failed the Shapiro-Wilk test of normal-

ity, and six failed Bartlett’s test for homogeneity of

variances of multiple batches. All variables except

exchangeable Ca and K showed one or more of these

deviations from the ideal behaviour expected of

laboratory quality control on well-mixed samples.

However, in absolute terms both total ranges and

standard deviations were quite low, except for two

important properties: available P and CEC. In the

case of available P, the total range of 4.3 mg kg�1

can exceed the total amount of this nutrient in many

soils of the study region. Removing the three boxplot

outliers still left a range of 3.1 mg kg�1. The

standard deviation of 0.86 mg kg�1 is also fairly

high; for low-P soils with an average of 4 mg kg�1 P

this would represent a coefficient of variation of over

20%. In the case of CEC, its standardized range of

1.54 cmol+ kg�1 soil is a significant fraction of

critical limits used in classification of the highly
Table 8

Summary statistics of the IRAD soil laboratory quality control samples fo

Variables Units Number

of samples

Number

of batches

P

P (available) mg kg�1 116 2 0.

Fe (free) % 20 1 NA

C (organic) % 261 3 0.

N (total) % 220 3 0.

Ca (exchangeable) cmol+ kg�1 72 3 0.

Mg (exchangeable) cmol+ kg�1 72 3 0.

K (exchangeable) cmol+ kg�1 72 3 0.

Na (exchangeable) cmol+ kg�1 72 3 0.

CEC cmol+ kg�1 72 3 0.

pH (water) pH 100 3 0.

pH (KCl) pH 100 3 0.

P (variances)=probability that rejecting the null hypothesis of equal batch

P (normality)=probability that rejecting the null hypothesis of a normally

Probability of significance: * (0.05); ** (0.01); *** (0.001).
weathered soils typical of the study area, e.g. the 4

cmol+ kg�1 soil limit for ferralic properties in the

WRB (FAO-ISRIC, 1998). Removing the four

boxplot outliers from the total sample of 72 almost

halved the range, to 0.89 cmol+ kg�1 soil. Thus the

quality control problem for CEC was mainly due to

a few poor determinations.

4.6. Aggregated multi-scale analysis of variance

components of a soil sample

This study has shown that variation in soil proper-

ties can occur over a large range of scales each with a

different contributions to the total variation. Factorial

ANOVAwas used to differentiate the contributions of

regional and local factors to soil variation. These

contributions are shown in Fig. 10 for six soil

variables at three soil layers. These are coefficients

of determination (explained variation/unexplained

variation, expressed in %) for each factor. Both

regional and local factors, including their interaction,

explained 60–85% of the variation at the three soil

layers, except for available P, where only about 30–

40% was explained. For soil chemical properties, pH

was the best-explained, with 80–85% at the three

layers; followed by total exchangeable bases (70–

80%) but only at the two top layers. For soil physical

properties, clay content and bulk density showed

similar pattern at the first two layers with 65% and

70% at the third layer for clay content.
r 11 soil properties (standardized to batch means)

(variances) Range P (normality) Boxplot

outliers

Standard

deviation

142 4.30 0.314 3 0.863

0.46 0.228 3 0.108

001*** 0.84 0.043* 1 0.141

000*** 0.17 0.000*** 0 0.034

407 0.93 0.321 0 0.183

035* 0.21 0.096 0 0.045

141 0.11 0.153 0 0.024

123 0.04 0.001*** 0 0.011

040* 1.54 0.068 4 0.255

017* 0.54 0.003** 0 0.144

000*** 0.53 0.035* 4 0.106

variances is an incorrect decision.

distributed variable is an incorrect decision.



Fig. 10. Contribution (in %) of regional, local, and within plot factors to soil properties variation for the soil variables significantly different at

pb0.05. N.B. Interaction was evaluated between regional and local factors only. Within plot variation was evaluated only for pH in water, total

bases and bulk density.
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Soil pH appeared to be the most affected by the

regional factors (68% at 30–50 cm) of soil variation,

followed by clay content (51% at the same depth).

This corroborates the results of regression analysis

and PCA which highlighted these two variables to be

of importance in describing regional soil variability.

The effect of land use at local level (in the two first

soil layers) was more important for the following

variables ranked in decreasing order: bulk density,

total exchangeable bases, available P, and total acidity.

This strong influence of regional landscape factors

and land use factors on soil variation is indeed an

important conclusion of this study, which has a direct

implication on sampling strategies for soil mapping

and research designed to determine appropriate soil

management practices (Bouma et al., 1999). The

landscape regional factors appear to be a spatially

coherent and permanent source of soil variation, while

the land use factors constitute rather a temporal source
of soil variation. Although Fig. 10 shows that the

effect of land use factors is often less than that of

landscape regional factors, their influences on soil

management and environmental conservation are the

most relevant to farmers who live in a given village.

Moreover, their temporal characteristic renders their

control more difficult. Research should focus more on

this aspect in order to develop models that may help to

understand the complex relations between land use

and soil properties dynamics at this scale. The

interaction between soil type and land use appeared

to be also important in this study, suggesting that any

management strategy should be site-specific.

In general, soil properties related to soil solution

and cations mobility (pH, exchangeable cations), and

those linked to soil adsorption complex (clay, organic

matter) were more variable under the influence of

both regional and local factors. Soil properties that are

related to soil nutrient retention, including available P
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and CEC, were more affected by local factors,

especially land use. This confirms the common

opinion that tropical rainforests are dominated by

nutrient-poor soils, in spite of the tremendous amount

of forest biomass that they support in climax

conditions. Nutrient retention of these soils is then

not related to the type of soils in presence, but rather

to the land use type they are being used for. In this

respect, the opinion of many researchers (Sanginga et

al., 2003; Van Wambeke, 1992) is that the fertility of

these soils is more related to the natural fertilization

system, the so-called nutrient cycle, than to soil

potentialities.

At plot level, though soil properties exhibited

spatial dependence, the contribution of the accumu-

lated variance to soil variation as shown in Fig. 10,

was so small (1% for bulk density, 3% for exchange-

able bases, and 8% for pH-water) that this variance

occurring at short distance does not significantly

influence soil data at the scale of farmers’ field plot,

and is minimized by the actual soil sampling strategy

of bulking and the actual soil management strategy of

slash-and-burn ash-fertilizing on a whole-plot basis.

However, any change in land use practice that tends to

increase field plot size (e.g. agricultural intensifica-

tion) may correlatively increase the variance of soil

properties at plot level to include much of the

variability found in the regional geostatistical analysis

of residuals. This result corroborates however, the

report from Corwin et al. (2003) who showed that the

greatest plot-scale variation was for pH and clay

content when portioning the plot- and local-scale

variation using ANOVA on composite soil samples of

a saline-sodic soil in California.

At the laboratory level, total ranges, variances and

standard deviations were quite low for soil variables

from repeated measurements in the laboratory, except

in the case of available P where the total range was

even higher than the total amount of this nutrient in

many soils of the study area (especially from lower

depths). The contribution of laboratory errors was

evaluated to be less than 5% for many soil variables,

except for available P (around 20%). This is in general

in line with Webster (2000) who reported that

determining the concentration of an element in the

soil typically incurs a laboratory error of 2–5% of the

true value. Variation due to the arbitrary choice of

actual sampling locations for either single or compo-
site samples is almost always significantly greater

than this.

Although 95% of the variation in pH was

explained by the three scale factors (regional, local,

and within plot), for most soil variables only 75–90%

were explained by these factors. Even adding the 5%

soil variation due to laboratory errors, there remains

5–20% variation that could not be explain by the four

scales of this study. Only pH was completely

explained.
5. Concluding remarks
– At regional level, the representative variables

(clay content and soil pH) at different soil depths

showed a clear dependence (30–50% of the total

variance) on geographic coordinates, as modelled

by a second-order GLS regional trend. Because of

the regional slope, elevation was an equally good

continuous predictor of these properties, as was a

simple zonation based on elevation, which was

also reflected in the soil classification.

– Both WRB reference soil groups (Ferralsols and

Acrisols) of the area showed strong spatial

clustering, meaning that this classification cap-

tures important mappable differences in regional

soils, leading to a sound basis for stratification for

agricultural and environmental studies.

– Geostatistical analysis of the residuals from the

regional trends models revealed a moderate spatial

dependence at sub-regional scales, up to about 2.5

km, with a large unexplained (nugget) variance.

Thus for a reliable regional map, a sampling

density on the order of 1 km2 would be required to

map regional variability which is not due to land

use, regional or environmental covariate. How-

ever, the results from various kriging mapping

suggested that at the actual sampling scheme a

mixed interpolator such as factorial kriging or a

wavelet analysis may provide a better insight into

the multi-scale structure of the variations, with

integrated regional and local spatially dependent

processes.

– Land use practices significantly influenced topsoil

variation at village level (i.e. between plots);

conversely there was low variation within field

plots at the sizes now typical of the land use
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system (1/3 to 1 ha), and the current soil sampling

strategy of bulking at plot level is thus justified.

– In the laboratory, the quality control process

largely minimized the treatment-induced error of

soil determinations, except in the notable case of

available P. This suggests that any field study on

low-P soils is suspect, since laboratory variability

can easily exceed treatment effects.

– This analysis was able to explain 80–95% of the

overall soil variation, with 5–70% by regional

factors, 3–30% by local factors, 1–10% by within-

plot factors, and less than 5% by laboratory errors;

however, 5–20% remained unexplained and is

perhaps due to interactions between levels for

which we had no experimental design, e.g. differ-

ent effects of land use in different major soil.

– Further research for a better understanding of the

relations between soil properties and environ-

mental factors, and to determine appropriate

management practices for resource use, should

focus chiefly on processes and factors occurring at

local level, as influenced by a dynamical land use

system.
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