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Abstract High-resolution population distribution

data are critical for successfully addressing important

issues ranging from socio-environmental research to

public health to homeland security, since scientific

analyses, operational activities, and policy decisions

are significantly influenced by the number of

impacted people. Dasymetric modeling has been a

well-recognized approach for spatial decomposition

of census data to increase the spatial resolution of

population distribution. However, enhancing the

temporal resolution of population distribution poses

a greater challenge. In this paper, we discuss the

development of LandScan USA, a multi-dimensional

dasymetric modeling approach, which has allowed

the creation of a very high-resolution population

distribution data both over space and time. At a

spatial resolution of 3 arc seconds (*90 m), the

initial LandScan USA database contains both a

nighttime residential as well as a baseline daytime

population distribution that incorporates movement

of workers and students. Challenging research issues

of disparate and misaligned spatial data and modeling

to develop a database at a national scale, as well as

model verification and validation approaches are

illustrated and discussed. Initial analyses indicate a

high degree of locational accuracy for LandScan

USA distribution model and data. High-resolution

population data such as LandScan USA, which

describes both distribution and dynamics of human

population, clearly has the potential to profoundly

impact multiple domain applications of national and

global priority.
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Introduction

High-resolution population distribution data are

essential for successfully addressing critical issues

ranging from socio-environmental research to public

health to homeland security (Dobson et al. 2000;

Bhaduri et al. 2002, 2005; Chen 2002; Hay et al.

2005; Sutton et al. 2001). Commonly available

population data, collected through modern censuses,

are constrained both in space and time and do not

capture the population dynamics as functions of space

and time. From a spatial perspective, census data are

limited by census accounting units (such as blocks),

and there often is great uncertainty about spatial

distribution of residents within those accounting

units. This is particularly true in suburban and rural

areas, where the population is dispersed to a greater

degree than in urban areas. For the US, the source for
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population data is the US Census Bureau, which

reports population counts by census blocks (smallest

polygonal unit), block groups (aggregated blocks),

and tracts (aggregated block groups). At the highest

resolution (block level), a uniform population distri-

bution is assumed and the population values are

typically an attribute of the block (polygon) cent-

roids. Similarly, population values for block groups

and tracts are reported at the centroids of the block

group and tract polygons. In geospatial analyses,

these points are used to represent the population of a

census polygon. For example, calculation of travel

time to health care providers considers these cent-

roids as the origins and/or destinations for travel. For

exposure and risk analyses, these centroids often

serve as ‘‘receptor’’ points for calculating exposure or

dosage from any dispersed agent.

In common practice, census data are intersected

with buffers of influence (such as those from

emission sources) using two primary approaches to

quantify population at risk:

(a) Tally the entire population (if the centroid is

inside the buffer) or zero population (if the

centroid is outside the buffer)

(b) An area weighted population accounting

approach (based on the ratio of the areas of

the polygon included in and excluded from the

buffer).

The first approach aggregates the entire population

of an area to a single (point) geolocation. The second

approach assumes the entire population of an area to

be uniformly distributed over that area. In fact, non-

uniform distribution of human population is quite

obvious from simple visual observation of any

landscape. From a temporal perspective, the resolu-

tion of census information is typically at anywhere

between 1 and 10 year cycles. The spatial granularity

of information for the decennial census is higher

compared to the yearly updates. This can be logically

explained by the original motivation for developing a

census for social and economic planning activities

aimed at medium to long-term solutions over a

number of years. Consequently a general geographic

assessment of population at relatively large time

intervals, described through their residential loca-

tions, was adequate to address such planning

processes (US Census Bureau 2000). However, with

pressing needs for finer temporal resolution

population distribution data for consequence assessment

of natural and technological disaster events, usage of

traditional census counts, represented as a ‘‘nighttime

residential’’ population, in a daytime event simulation

is irrational. Because of this uncertainty, there is

significant potential to misclassify people with

respect to their location, for example pollution

sources, and consequently it becomes challenging to

differentiate environmental exposure in specific sub-

populations. These limitations, to a large degree, can

be overcome by developing population data with a

finer resolution in both space and time at sub-census

levels. Geodemographic data at such scales will

represent a more realistic non-uniform distribution of

population.

Background

Spatial decomposition of census data

Spatial decomposition of census population estimates

has been well studied over the last few decades. A

number of interpolation and decomposition methods

have been developed to address this issue with census

(polygonal) population data. Among such

approaches, areal weighting, pycnophylactic interpo-

lation, dasymetric mapping, and various smart

interpolation techniques are agreeably the most well

recognized and widely discussed in literature. Areal

weighted interpolation is the simplest approach and

implies an assumption of uniform distribution of

population. In this method, a regular grid is inter-

sected with the census polygon and each grid cell is

assigned a value based on the proportion of the

polygon contained in each cell (Goodchild and Lam

1980; Flowerdrew and Green 1992; Goodchild et al.

1993). Pycnophylactic interpolation extends areal

weighting methodology by applying a smoothing

function to the raster cell values, with the weighted

average of its nearest neighbors, iteratively while

preserving the total population count of the polygon

(Tobler 1979). The result of such interpolation

develops a continuous population surface which

disagrees with the noticeable discontinuous nature

of population distribution. Dasymetric modeling is

comparable to areal interpolation but utilizes ancil-

lary spatial data to augment the interpolation process.

The ancillary spatial data are at a finer spatial
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resolution, and the variability and spatial discontinuity

in their values enable an asymmetric and discontin-

uous allocation of population (Wright 1936; Langford

and Unwin 1994; Eicher and Brewer 2001; Mennis

2003). Land cover/land use is the best example in this

respect (Monmonier and Schnell 1984; Reibel and

Agrawal 2006) where different land cover or land use

categories for each cell can be used as a weighting

function for population distribution such as urban

areas which will have a higher weight than forested

areas. Smart interpolation, in principle, is a multidi-

mensional adaptation of the dasymetric model where

the allocation refinement results from multiple ancil-

lary data sources which are at a finer resolution

compared to the population polygon (Langford and

Unwin 1994; Cohen and Small 1998). In general, the

utility of such interpolation techniques for enhancing

the spatial resolution of population distribution data

at local scales have been demonstrated (Sleeter and

Wood 2006; Sleeter 2007) but few attempts have

been made to create a model that is scalable from

local to global. In fact, there are only a few well-

known models that have been successfully employed

to develop global population data sets, namely the

Gridded Population of the World (GPW), the Global

Rural Urban Mapping Project (GRUMP), and Land-

Scan Global Population database. GPW is a product

of simple areal weighting interpolation and GRUMP

is derived through a simple dasymetric modeling. On

the other hand, LandScan is structurally a multidi-

mensional dasymetric model. However, as discussed

in later sections of this paper, the model is not just

limited to pre-determined spatial operations among

input data variables. It involves a significant level of

analyst intervention to validate input data and mod-

eling parameters, as well as to improve precision of

the model output based on local knowledge. Mennis

and Hultgren (2006) have recently referred to this

type of modeling approach as ‘‘Intelligent’’ dasymet-

ric modeling.

Temporal resolution of population distribution

Human population distribution behaves as a func-

tion of both space and time. However, the spatial

aspect of population distribution has received the

most attention of the interpolation methods. Popu-

lation distribution, as it directly relates to various

human activities, can be functionally described by

the various demographic groups representing those

activities (Fig. 1). Mobility of population from their

residences results from temporary relocation to

places of daytime activities that include places of

education (schools, colleges, and universities),

employment, businesses (shopping, post offices,

restaurants, and others), or recreational areas (parks,

Fig. 1 Population

distribution model

components. LandScan

USA version 1.0 follows the

baseline nighttime and

daytime population

distribution including the

static population
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museums, and other tourist attractions) during the

day (Quinn 1950; US Census Bureau 2000). In

general population distributions of an area can be

conceptually described as:

It follows that, quantitative estimates of temporal

population distribution involve two distinct ele-

ments; the identification of activity locations such

as businesses, schools, and other recreational

activities, and the second addresses the identifica-

tion and distribution of the mobile population that

are at those locations. From a modeling perspec-

tive, it is easier to gather data on the activity

locations as static geographic features that are

commonly captured in public and commercial

databases for various infrastructures, or can be

derived from remote sensing based land cover data,

high resolution satellite and aerial photographs, or

state and local government data (Forster 1985;

Harvey 2002a, b). It is extremely challenging to

quantify the number and nature of the mobile

population that comprehensively captures the net

displacement of residential population during the

daytime or nighttime. Although, detailed population

movement data sets may be available for selected

local communities or even urban areas, they are not

available at a national scale. In fact, the US Census

Bureau’s compilation of Journey to Work data are

the only readily available and nationally consistent

data set for the US that describes people’s move-

ment from residences to employment locations.

Consequently, the US Census Bureau’s estimate of

daytime population based on the 2000 Census only

reflect populations based on travel to work (US Census

Bureau 2000). Similarly, it does not limit the work

related commuting to specific hours. All worker-

related travel, irrespective of what time of the day it

occurs, has been used to derive these estimates of

daytime population.

Modeling population dynamics

The temporal dynamics of population are well

realized (Quinn 1950) and understood but very

few attempts have been made to incorporate such

temporal variability in a population distribution

model and database. The LandScan Global model

and database is the earliest example where the

diurnal change in population distribution due to

employment was originally captured (Dobson et al.

2000, 2003). The LandScan Global model assigns

non-zero likelihood factors to areas where the land

use indicates a non-residential, work related activity

(such as commercial, industrial, and agricultural).

Consequently, the LandScan Global Database rep-

resents an ‘‘ambient’’ or average population

distribution over a 24 h period. In 2000, Oak Ridge

National Laboratory extended the LandScan Global

Population distribution model and developed the

LandScan USA model, a very high resolution and

scalable population distribution model for the US.

At a 3 arc-second spatial resolution, it is not only

the highest resolution national population distribu-

tion data ever produced, but also the first to isolate

and capture the diurnal population dynamics indi-

vidually. Thus the LandScan USA database contains

a nighttime residential as well as a daytime popu-

lation distribution data set. Subsequent to LandScan

USA, the only other known effort to develop an

analogous model has been at the Los Alamos

National Laboratory (McPherson and Brown 2004;

McPherson et al. 2006) that developed nighttime

residential and daytime distribution data at a 250 m

resolution. In 2000, the original prototype for

LandScan USA was developed for the US Environ-

mental Protection Agency (USEPA) and Department

of Energy (DOE) for 25 southeastern counties in

Texas. In the following years, the model was

Nighttime Population ¼ Nighttime Residential Populationþ Nighttime Workersþ Touristsþ
Business travelers ðþ Static PopulationÞ

ð1Þ

and,

Daytime Population ¼Workersþ School childrenþ Touristsþ Business travelersþ Residual

Nighttime Residential Population ðþ Static PopulationÞ
ð2Þ
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extended to other areas in the US; first to the 133

larger urban areas for the Defense Threat Reduction

Agency (DTRA) and then for the 99 counties in

Iowa for the National Cancer Institute (NCI).

Development of a national database was formally

initiated for the Department of Homeland Security

in 2005 and LandScan USA version 1.0 was

completed in 2006 that covers the United States

and Puerto Rico.

Methodology

As discussed earlier, LandScan Global and LandScan

USA can be considered, at one level of abstraction, as

multi-dimensional dasymetric or smart interpolation

models. Since their inceptions, these have been

evolving models with incremental development of

spatially refined population distribution algorithms

resulting from the availability of newer or higher

quality input data sets to the model parameters. For

example, the LandScan USA model was initially

developed around publicly available input data sets

but later some commercial data sets were utilized for

higher spatial accuracy and greater information

content. The general methodology and specific

implementations (including LandScan) of both dasy-

metric and smart interpolation techniques are very

well illustrated and documented in the literature

(Dobson et al. 2000; Eicher and Brewer 2001;

Mennis 2003; Mennis and Hultgren 2006). Thus, in

this paper, we describe the general motivation and

modeling principles behind LandScan USA in terms

of capturing the temporal dynamics of population,

particularly in light of the input data sets utilized for

the LandScan USA version 1.0 database (Table 1).

The overall motivation behind LandScan USA is

to develop a nationally to globally scalable popula-

tion distribution model that adequately represents the

nighttime and daytime population distributions at a

very high spatial resolution of 3 arc-seconds. Thus

our goal has been to select input data variables for the

model based on the availability of national data sets

and not to create model parameters based on the

potential availability of data sets at the state and local

levels. However, higher quality input data for estab-

lished model parameters are often available from

state and local agencies and these are utilized to

enhance the quality of the data for those locations.

The LandScan USA model is essentially composed

of two different components: one addressing the

nighttime population distribution and the other address-

ing the population dynamics leading to a daytime

population distribution. Further, in version 1.0 we have

only accounted for the nighttime residential population

and the baseline daytime population. The static popu-

lation in an area is represented by the prison population

and is accounted for in both components. However,

since school aged children are located at K-12 school

locations and colleges and universities are populated

with expected student population, LandScan USA

version 1.0 is representative of a regular weekday

when academic institutions are in session as opposed to

a weekend day. This daytime population distribution

includes no business travelers or tourists, but are being

included for future releases of the data set. Figure 2

shows an example of LandScan USA nighttime and

daytime population distributions.

Nighttime population distribution

Estimating residential population distribution

Census population data serve as the nucleus of the

LandScan USA model and the model is resolved to

each census block with the goal being to maintain the

integrity of the Census Bureau data at the block level.

A census block is divided into finer grid cells (1 arc-

second or 30 m) and the total population for the block

is then allocated to the cells with weights propor-

tional to the calculated likelihood (population

coefficient) of being populated. Relative weights are

empirically assigned to each cell for a number of data

layers and all weights assigned from different data

layers are combined to develop a cumulative weight

for each cell (in a i, j matrix of cells) as follows:

WCell i;j¼ LCi;j�PRi;j�PRRi:j�Si;j�LMi;j�PRKSi;j

�SCHi;j�PRSNi;j�ARPTi;j�WTRi;j

where LC, Weight for Land Cover; PR, Weight for

proximity to roads; PRR, Weight for proximity to rail

roads; S, Weight for slope factor; LM, Weight for

landmark polygon feature; PRKS, Weight for parks,

SCH, Weight for K-12 schools, PRSN, Weight for

prisons; ARPT, Weight for Airports; and WTR,

Weight for water bodies.
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Once the individual cumulative cell weights are

derived, these are combined and weighed with

respect to the total population of the block to develop

a block level population (or likelihood) coefficient

as follows:

PCBlock ¼
Total PopulationBlock

Pn

1

WCell i;j

where PC, Population Coefficient and N, Number of

LandScan USA cells describing the block.

Subsequently, the total population for that block is

then allocated to each cell weighted by the calculated

likelihood (population coefficient) of being populated

as shown below:

PopulationCell i;j ¼ PCBlock �WCell i;j

For version 1.0, the decennial (2000) census block data

was interpolated with the Census Bureau’s estimated

county totals for July 1, 2004 to be representative of a

2004 timeframe. Rather than simply increase or

decrease all the blocks within an entire county at the

same county level percent change for 2004, we

calculated the percentage of population change for

each tract within a county between 1990 and 2000,

taking into account that sometimes tract boundaries

mismatch between the two census years. This percent-

age for the tract was then prorated to the blocks within

each tract, and finally the block numbers were

normalized in order to sum to the Census Bureau’s

estimated July 2004 county total. Simply prorating the

inter-census growth across a county would add

proportionally more people to the blocks containing

the greatest population (in all likelihood these blocks

would already be fully developed). The goal was to

locate the areas of the county that were experiencing

growth in the preceding years and continue that growth

from 2000 to 2004. This particular approach is spatially

less explicit, but a better alternative to the assumption

of uniform population change. Currently we are

exploring new ways to extrapolate the growth within

a county using new land cover or parcel data.

In the LandScan USA model, each census block

is characterized using the land cover data to

estimate the individual percentages of urban (res-

idential, commercial, and industrial classes) and

non-urban (agricultural, forests, and other classes)

along with the census block population and number

of housing units. Based on these evaluations, each

census block is allocated to a sub-model that uses a

specific allocation algorithm that relates such

characterizations to cultural and settlement geo-

graphic understandings (Table 2). Additional spatial

data for transportation (roads and railroads), phys-

iography (water and steep slope); cultural

landmarks (such as businesses, religious institu-

tions, and schools) are then used to reclassify the

LandScan USA grid cells to different likelihood

values for human habitation.

The block level population counts are considered

as a ‘‘control’’ to allocate the population within each

block; i.e. the sum of the estimated populations in

each cell from a block is constrained to equal the

census block population, and all calculations are

performed at the 1 arc-second level. Then, the cells

are aggregated up to 3 arc-seconds resolution for the

final output to account for spatial data geo-location

and misalignment errors.

Estimating static (prison) population distribution

Initially prison locations are compiled from the

National Jail Census and Tele Atlas database. These

Fig. 2 LandScan USA

nighttime and daytime

population distributions for

San Francisco, California
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locations have been further refined by visual identifica-

tion, and correctional database websites (Table 1).

Census block data do not explicitly report prison

population, but indicate the possibility of such a facility

with high population counts and low to zero housing

numbers. Such blocks are identified for further analysis.

The initial static population distributions for those

blocks are visually verified with high-resolution imag-

ery and topographic maps. If a prison location is

confirmed, its outline is digitized to cover the facility

and grounds and the block population is updated. The

prison population is then verified through various

correctional database websites including the Federal,

State, County and other confirmed database websites. In

some cases, a prison or correctional facility location is

found in an adjacent block and the population for that

block is updated.

Daytime population distribution

Deriving a quantitative estimate from the above

qualitative expressions involves further analyses of

population data which can be represented as: 1

Although this may not be the most accurate or

comprehensive representation, we consider this to be

the expression leading to the best available daytime

population estimates.

Estimating worker distribution

Workers are estimated at the block level by using a

combination of a top-down and bottom-up approach.

Table 2 Sub models used within the LandScan USA model

Sub-model Model type/

characteristic

Population

presence

Population/housing

unit

Population/

1 sec cell

Population/

developed 1 sec cell

Percent

developed

Percent

water

1 Water/Wetlands Yes NA NA NA NA 100

2 Rural Yes Low-Medium Low-Medium NA None \100

3 Dense Urban Yes High High High High \100

4 Suburban Yes Low-Medium Low-Medium Low-Medium Medium \100

5 Atypical Population

Densities

Yes Very High Very High Very High Varies \100

6 No Population No NA NA NA NA \100

7 Suburban-

Questionable LC

Yes Low-Medium Low-Medium Low-Medium Low \100

8 Questionable

Vector Input

Yes NA NA NA NA \100

Daytime Population ¼Nighttime Residential Population�Workersleavingduringthedayþ
Workingmovinginduringtheday� Schoolchildrenleavingduringthe

dayþ Schoolchildrenmovinginduringtheday ðþ Touristsvisiting

duringthedayþ Business travelerscomingintotheareaÞ

Daytime Population ¼Nighttime Populationþ Daytime incoming population� Daytime

outgoing population

1 Not included in LandScan USA version. 1.0
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The total number of workers for a given county from

the Bureau of Labor Statistics (BLS) is prorated to the

tract worker total reported by the Census Bureau’s

tract-to-tract worker flow table. The workers for each

block are also estimated using the total worker

population reported by the InfoUSA database

(Table 1) for each block. Finally, these block estimates

are then prorated to the final block worker counts using

the tract totals. There are many instances where

businesses are geocoded to zip code centroids rather

than to specific addresses. In those situations, special

measures are taken to distribute workers to blocks

within the zip code that contain a high percentage of

developed land cover with zero population (i.e. likely

commercial or industrial areas).

Estimating K-12 school children and higher

education students distribution

For distributing students at school, the census num-

bers for the demographic group between 5 through 17

and half of the 18 years age group are considered to

be representative of the K-12 age population and it is

assumed that all school children go to schools within

the county they live. Due to a lack of readily

available data at the time of model development,

among the school age population 1.5% were assumed

to be home-schooled and 3% were assumed to be

sick, delinquent, and etc. These were subtracted from

the total number of school-aged children. The sum of

K-12 enrollment values in the National Center for

Education Statistics (NCES) dataset is also subtracted

to obtain the number of students available to be

dispersed to the remaining NCES schools. If individ-

ual school enrollment data are available, the

appropriate numbers of enrolled students are distrib-

uted to the specific school locations. The schools with

missing enrollments are assigned weight values of 1

for elementary schools, 2 for combined and middle

schools, and 3 for high schools. These weights were

designed to reflect the hierarchical scaling of several

elementary schools into a single middle school, and

several middle schools comprising a high school. The

difference between the number of children attending

school in the county and the total number of students

from the enrollment data are proportionally distrib-

uted to schools with missing enrollments using the

weights assigned to elementary, middle, and high

schools. Students attending colleges, universities and

other post secondary institutions and living away from

home in dormitories, apartments, and houses are

typically accounted for in the census and are reflected

in the nighttime model output. During the daytime, the

numbers of students attending colleges or universities

are found using the NCES and Tele Atlas databases

for post-secondary institutions and are distributed to

their corresponding locations. Where campus bound-

ary information is available, high-resolution imagery

is utilized to disaggregate population to appropriate

settlement spaces (such as buildings).

Iterative data refinement process

For both nighttime and daytime population distribu-

tions, understanding the impacts that input spatial data

anomalies (e.g. geolocation errors, misclassifications,

and data currency) may have on the model output, a

visual verification and modification process is

employed to improve the spatial precision of the

population distribution. Each county is evaluated by a

GIS analyst by comparing the model output to high-

resolution imagery and checked for obvious discrep-

ancies. During this process, the analyst may make

corrections to the locations of point features (e.g.

schools or businesses) or make areal modifications to

the population distribution (e.g. decreasing the distri-

bution in a parking lot and increasing that of the

adjoining apartment building). All modifications are

captured as an additional input layer for the model and

the population distribution model for that county is run

again. These iterations continue until the analyst is

satisfied with the spatial fidelity of the model output

within permissible limits of time and budget con-

straints. For example, using high-resolution imagery,

school locations are verified and subsequently the

NCES database website is consulted to verify and

update school enrollments. Often, some schools are

found to have been closed and such school population is

deleted from the daytime population distribution.

Results and discussions

It is important to realize that there is an element

of subjectivity in dasymetric modeling or smart
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interpolation as this approach assigns empirical

weighing factors to individual data layers and to

different data sub-categories within each data layer.

This human element of the modeling process implies

an inherent variability in the model results as

different analysts independently attempts to create a

model for the same area. Such variability will

primarily be reflected in the predictability of an

unpopulated cell based on the assumption of suit-

ability for human habitation. For example, one

version of a model may assume no residential

population in agricultural areas where another may

assume some residential population in those areas.

This can be attributed to the signatures of smaller

human settlements within larger agricultural areas

that may not be detected due to an omission error in

the land cover data as they are derived from remotely

sensed satellite images. The more expected variabil-

ity will result from using different ‘‘weighting scales’’

for individual data sub-categories. For example,

weights to different land cover classes can be

assigned in numerous ways as long as the assump-

tions about the relative or mutual relationship among

the different sub-classes in terms of relative likeli-

hood of population in those respective classes are

preserved and consequently forces differentiating

population counts to those respective sub-classes. In

the real world, such spatial variability is quite

expected resulting from the physiographic, socioeco-

nomic, and cultural disparities across geographic

scales. Thus the model fidelity is likely heavily

influenced by modification of model parameters and

assumptions based on ‘‘local’’ knowledge of the area

being modeled. In practice, it is almost impossible to

validate any of these assumptions and the predicted

population counts at the individual cell level. How-

ever, the ability of a model to predict populated and

unpopulated areas can be evaluated by comparing the

model results with a data set that illustrates human

settlements at the same or higher resolution than the

input data used in the model.

LandScan USA verification and validation

True validation of any spatial model can only be

achieved through ground truthing or validation.

This is impractical for a dasymetric model such as

LandScan USA for several reasons. First, ground

validation will essentially repeat the data collection

process as done in the general census. Other than

the enormous resource constraints, this process is

implausible due to the sensitivity associated with

individual privacy issues. However, it may be

possible to assess the model fidelity by comparing

the results with detailed raw census data accessible

through a secure process at the Census Bureau and

should be addressed in future research. At present

we address the verification and validation process

and data integrity assessment in the following

ways.

Quality assurance of input data sets

Input data sets are evaluated for possible errors or

anomalies through automated algorithms as well as

through manual verification. This minimizes the

introduction of errors and inaccuracies into the

modeling process. Assessments of population and

land cover data sets are achieved through mutual

comparison. Using the census block population and

the land cover areas classified as residential, popu-

lation densities are derived to evaluate large

deviations from a normally expected range to identify

possible data errors such as mis-tabulation of census

data. The number of housing units and average

household size from the census data as well as high-

resolution satellite imagery are utilized to investigate

data anomalies. For example, often the land cover

data are older than the census population data and

possible urbanization (as verified by imagery) helps

explain a higher than expected population density. In

some cases, an unusual population density is

explained by the presence of static (prison) popula-

tion which can be verified by the prisons database and

high-resolution imagery. Similarly, an extensive

spatial accuracy assessment is performed for other

input data sets (schools, prisons, work and business

locations) using census data and visual interpretation

of orthophotographs.

Model resolution

By resolving the model at a census block resolution,

we attempt to spatially restrict any possible irregu-

larities resulting from model assumptions within the
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block boundary and eliminating impacts to larger

enumeration areas.

Cross validation with census data for assessing

spatial integrity

In lieu of validation based on field collected and

statistically robust data sets, a regression based corre-

lation analysis based test can be designed to test the

spatial integrity of LandScan USA relative to census

data. This type of correlation analysis is inherently

spurious since LandScan USA data is being correlated

with census data which is used in the LandScan USA

model. However, the objective of this correlation

analysis is to illustrate that should a user choose to use

LandScan USA data at the census block (or higher)

level, the total population will be virtually equivalent,

and hence imply the same level of user confidence for

both data sets. Since the original distribution is

developed and normalized exactly to the total block

population at 1 arc-second and subsequently aggre-

gated up to 3 arc-seconds resolution; an anticipated

consequence of such spatial disaggregation-based

modeling is a potential mensuration error. Comparison

of block, block group, tract, or county population

estimated from intersecting LandScan USA (with the

corresponding boundaries) and those reported from the

Census Bureau can provide an understanding of any

measurement differences during the spatial decompo-

sition process. Based on the distribution of the US

counties with respect to their median block size and

census population count (Fig. 3), Ellis County, Okla-

homa and Los Angeles County, California were chosen

as representatives of rural and urban landscapes. For

these two counties, an evaluation of the census blocks

with different LandScan USA sub-models (Table 2)

criteria also attest to such rural and urban character-

istics (Fig. 4). LandScan USA nighttime or residential

data were intersected using census block boundaries

rasterized to 3 arc-second cells, and the resulting

LandScan USA population counts were compared

against the adjusted census block populations. Results

indicate a significant level of correlation between

LandScan USA and the rasterized census block

populations (Table 3) with correlation coefficients of

0.87 and 0.93 for Ellis and Los Angles Counties

respectively (Fig. 5a, b). When a similar analysis is

performed with the 3110 counties of the 48 contiguous

US (i.e. intersecting LandScan USA county boundaries

and comparing with the adjusted census population

counts), the results indicate a high degree of correlation

for the LandScan USA model (Fig. 5c).

Cross validation using imagery

A goal for LandScan USA is to provide additional

spatial accuracy of population distributions at the

sub-census level. Although a numerical accuracy

assessment of LandScan USA data at the individual

cell level is impossible (i.e. validate the number of

people predicted for each cell), it is possible to

assess the locational accuracy and precision of the

model and data. With very high resolution ortho-

photographs, 964 geocoded house locations were

compared with an earlier version of LandScan USA

data in Iowa (Cai et al. 2006). Using a spatial

sensitivity filter of 90 m, the analysis indicated

72.5% accuracy in predicting populated cells over

house locations and 99% accuracy in predicting

unpopulated areas. Increasing the sensitivity filter to

180 m dramatically increases the accuracy level to

88%. It should be noted that the earlier version of

LandScan USA used in this assessment was devel-

oped with the TIGER (Topologically Integrated

Geographic Encoding and Referencing system)

roads data set which has a relatively large spatial

error. Though this analysis has not been repeated

with the LandScan USA version 1.0 data, it will

likely indicate a very satisfactory locational accu-

racy levels because it was developed with much

higher quality data (including roads).

Fig. 3 Characterization of the US counties based on the

median block population vs. the median block area. The urban

counties tend towards a smaller block size (New York County,

New York) whereas the rural counties tend towards a larger

block size (Johnson County, Wyoming)
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Applications of LandScan USA

High resolution population data serve as the nucleus

to numerous application domains of national and

global significance ranging from homeland security

to transportation planning to socio-environmental

studies. With daytime and nighttime (residential)

population distributions, LandScan USA potentially

magnifies the utility of high resolution population

data across such a broad range of applications.

Among all, disaster and consequence management,

public health, and socioeconomic analysis are the

three areas where the impacts are immediate and

most significant. The unpredictable nature of techno-

logical and natural disasters put a large number of

‘‘unwarned’’ populations at risk. LandScan USA has

become an integral part of homeland and

national security through emergency preparedness

and response including rapid risk assessment, evac-

uation planning, and relief delivery. Exposure

analysis for public health and socio-environmental

(environmental justice) studies can have tremendous

benefits from LandScan USA data. In spatial epide-

miology and disease (cancer) mapping, the utility of

LandScan USA has been well illustrated (Cai et al.

2006). It is realized that activity based and time

specific high resolution population distribution data

will be of great advantage for socioeconomic

(research and commercial) applications for evaluating

the potential for Location Based Services (LBS) such

as access to healthcare or coverage for wireless

and cellular phones. Detailed discussions of the

Table 3 Regression analyses output by block for a rural and an urban county; and by county for all counties within the contiguous

United States

Spatial unit Census population LandScan USA population

Ellis Co, OK 3,996 4,001

Los Angles, CA 9,871,506 9,871,490

Spatial unit No. census blocks Coefficient R2 p-value

Ellis Co, OK 1,254

Constant 0.396 0.812 0

LandScan 0.873

Los Angles, CA 82,948

Constant 1.228 0.929 0

LandScan 0.972

Contiguous US 3,109

Constant 11.576 0.999 0

LandScan 1.000

Fig. 4 Census blocks are

modeled individually based

upon their unique

characteristics. The block

sub-model frequency

difference is readily

apparent between an urban

and rural county, as shown

in Los Angeles County,

California and Ellis County,

Oklahoma
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applications of LandScan model and data can be

found elsewhere (Bhaduri 2007; Bhaduri et al. 2002,

2005; Chen 2002; Dobson et al. 2000; Hay et al.

2005; Sutton et al. 2001).

Future research

Geospatial and temporal dynamics of population are

complex social processes. Consequently, effective

characterization of such population dynamics

requires development of high resolution spatial and

temporal models that adequately capture social

complexity and its influence on human movement

patterns. As the resolution of available spatial data

increases (for example parcel level data are now

being collected and distributed by most state and

local governments), it is logically possible to increase

the resolution of population distribution models to the

corresponding resolution. However, characterization

of population with respect to functional space, such

as indoor and outdoor population, will be an impor-

tant aspect to investigate. Understanding and

modeling the temporal resolution is a more compli-

cated issue as the periodicity in the definition of a

temporal resolution can greatly vary. The (average)

representation of temporal resolution can range from

a simple average nighttime and daytime distribution

to hourly (and finer), weekly, monthly, seasonal, and

yearly time frames. However, such approaches need

to be high (spatial and temporal) resolution data

driven so that the impacts of weather, climate,

seasons, and special population (cultural, social, and

political) events are adequately accounted for in the

average distribution. At present, LandScan USA

represents only an average working day population

distribution. However, LandScan USA general

framework is a computationally intensive approach

where the goal is to develop population distribution

and dynamics models at the highest possible spatial

and temporal resolutions and then aggregate the

results to derive the best possible average represen-

tations over larger time periods. For example,

developing an average workday population distribu-

tion could be developed from hourly representations

during such a day. LandScan USA is an ongoing

research program and most of the research and

development issues identified here are being

Fig. 5 Regression analyses of a rural county (Ellis County,

Oklahoma), an urban county (Los Angeles, California), and all

counties of the contiguous United States depicting the error

induced by aggregating the population distribution cells from

1-arc second to 3-arc seconds
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addressed within the scope of the research program.

Substantial updates to the nighttime and daytime

population distribution databases are expected in

subsequent releases of LandScan USA.

Conclusions

Utilizing the increasing availability of national geo-

spatial data sets including high resolution imagery,

the LandScan USA model extends the existing

paradigm of simple dasymetric modeling of census

data through an innovative spatial data modeling

approach. Integration of multiple high resolution

indicator data sets, such as land cover, roads, cultural

landmarks, educational institutions, and business

activity locations, combined with human intelligence

through analyst intervention allows efficient resolu-

tion enhancement in both spatial and temporal

dimensions. The ability to incorporate activity-based

information provides an unprecedented opportunity

to design and develop a nationally consistent model

that illustrates not only nighttime or residential

population distribution, but also the mobility and

dynamics of different demographic groups. The

LandScan USA database (version 1.0) has been

developed for the entire US and this initial release

contains nighttime and baseline daytime population

distributions at 3 arc-seconds resolution. Nighttime

distribution covers residential and baseline daytime

covers mobility of workers and students. Static

(prison) population is included in both distributions.

Transient population (business travelers and tourists)

are not included in this version and will be included

in the subsequent release of the database. Qualitative

and quantitative verification and validation of the

modeling parameters and quality assessment analysis

demonstrate a high degree of precision and locational

accuracy for the LandScan USA model and database.

Current research efforts address the coupling of

transportation modeling framework with population

distribution data to develop population distribution

scenarios at even finer time intervals (for example,

hourly). Very high-resolution population databases,

such as LandScan USA are imminently expected to

enhance the current fidelity of spatial analysis, model-

ing, and decision support activities in application

domains across the areas of homeland security, emer-

gency preparedness and response, socio-environmental

studies, and public health and consequently allow

evaluation of existing policy.
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