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2.3 Magnitude-frequency analysis

This section introduces the concept of magnitude frequency analysis and gives examples of the generation of magnitude-
frequency relations for flooding and landslides.
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Introduction

As described in section 2.1, the most important aspects of hazards are the spatial and temporal characteristics of the 
events. One of the most important temporal characteristic of a hazardous event is the frequency of occurrence. Frequency 
is:

the rate of occurrence of a phenomena; 
the relationship between incidence and time period;
the number of occurrences within a certain period of time; 
the quotient of the number of times n a periodic phenomenon occurs over the time t in which it 
occurs: f = n / t
the (temporal) probability that a hazardous event with a given magnitude occurs in a certain area in a 
given period of time (years, decades, centuries etc.). 

In hazard assessment, frequency is a key point to study the occurrence probability of hazardous events in the future. The 
analysis of historical records and their frequency allows scientists to understand when a certain hazard with a certain 
magnitude is likely to occur in a given area. In most of the cases there is a fixed relation between magnitude and 
frequency for natural events (see figure 1). The frequency of events with a low magnitude is high, while the frequency of 
events with great magnitude is low: i.e. small flood events occur every year while enormous and devastating inundations 
are likely to happen once every one or more centuries. Magnitude-frequency relationship is a relationship where events 
with a smaller magnitude happen more often than events with large magnitudes. For rainfall phenomena both small 
magnitudes as well as large magnitudes may be catastrophic as illustrated in figure 1.

Figure 1: Graphs showing the magnitude – frequency relation for rainfall related events. 
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Few hazards don’t follow this rule; an example of events with random relation between magnitude and frequency is 
lightning. Frequency is generally expressed in terms of exceedance probability; which is defined as the chance that during 
the year an event with a certain magnitude is likely to occur. The exceedance probability can be shown as a percentage: 
a hazard, that statistically occurred once every 25 years, has an exceedance probability equal to 0.25 (or 25%). Another 
method is the calculation of the return period: it indicates the period in years in which the hazards is likely to occur 
based on historic records; an example can be a flood with a return period of 100 years (100 years return period flood = 
1 event in 100 years = 0.01 probability).

Figure 2: Relation between magnitude and frequency. Hazard A shows a relationship where the same magnitude may 
occur much more frequent than for hazard B. 

Most hazard types display a relationship between the likelihood of occurrence (probability) and the magnitude of the 
event, as shown in figure 2. This relationship might differ substantially depending on the hazard type. The frequency 
magnitude relationship can be valid for the same location (e.g. a particular slope, x-y location, building site). This is the 
case for events like flooding, where each location will have its own height-frequency relationship depending on the local 
situation. The flood itself will also have its own discharge-frequency relationship for the entire catchment, but this can be 
used as input to calculate the height-frequency relationship for a particular point.  In other cases the frequency magnitude 
relationship cannot be established for an individual point, but is done for a larger area (e.g. catchment, province, country, 
globe). For instance the occurrence of landslides cannot be represented for a particular location as a magnitude-
frequency relationship (except for debris flows and rock fall) as the occurrence of a landslide will modify the terrain 
completely. Thus you cannot say that small landslides occur often in the same location and large landslide less 
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frequently. However, you can say that for an entire watershed.

A frequency-magnitude relationship is normally based on a historical record of hazardous events (See previous section 2.2
). This is illustrated in Figure 3, where data is available for a 25 year period. The maximum discharge measured per year 
is plotted after it was ordered from high to low, and the regression line shows the magnitude-frequency relation for these 
observed data. For larger return periods there are no observed data anymore and therefore the regression line is 
extrapolated. Obviously, the shorter the observed period is, the less reliable will be the regression line, and the higher 
will be the uncertainty of the extrapolated line.

Figure 3: Frequency magnitude example for flooding, showing the relation between flood discharge, return period and 
probability.

Historical information is always incomplete, as we can only obtain information over a particular period of time, e.g. the 
period over which there was a network of seismographs. The length of the historical record is of large importance for 
accurately estimating the magnitude-frequency relation. If the time period is too short, and didn’t contain any major 
events, it will be difficult to estimate the probability of events with large return periods. The accuracy of prediction also 
depends on the completeness of the catalog over a given time period. In the case that many events are missing, it will 
be difficult to make a good estimation.

Also when the measurement period contains a large outlier (an event with a much higher magnitude than the others) the 
results may also be ambiguous. This is illustrated in figure 4, showing the range of uncertainty due to the occurrence of 
two events with higher magnitude.

Figure 4: Uncertainty in magnitude-frequency relation due to the occurrence of outliers.
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In the following section examples are given of the generation of magnitude-frequency relations: for flooding, and 
landslides. 

Flood frequency analysis

Hydrologic systems are sometimes impacted by extreme events, such as severe storms, floods, and droughts. The 
magnitude of such an event is inversely related to its frequency of occurrence, very severe events occurring less 
frequently than more moderate events. The objective of frequency analysis of hydrologic data is to relate the magnitude 
of extreme events to their frequency of occurrence through the use of probability distributions. The hydrologic data 
analysed are assumed to be independent and identically distributed, and the hydrologic system producing them (e.g. a 
storm rainfall system) is considered to be stochastic, space-independent, and time-independent.

Table 1: Example of maximum discharge values measured in a watershed in the period 1965 – 2008. Values higher than 
50000 are indicated in bold.

Year 1960 1970 1980 1990 2000
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The hydrologic data employed should be carefully selected so that the assumptions of independence and identical 
distribution are satisfied. In practice, this is often achieved by selecting the annual maximum of the variable being 
analysed (e.g. the annual maximum discharge, which is the largest instantaneous peak flow occurring at any time during 
the year) with the expectation that successive observations of this variable from year to year will be independent.

The results of flood flow frequency analysis can be used for many engineering purposes: for the design of dams, bridges, 
culverts, and flood control structures; to determine the economic value of flood control projects; and to delineate flood 
plains and determine the effect of encroachments on the flood plain.

 

Return period

Suppose that an extreme event is defined to have occurred if a random variable X is greater than or equal to some level 
xT. The recurrence interval t is the time between occurrences of X >= x T.  For example, table 1 shows the record of 
annual maximum discharges of a river, from 1965 to 2008. If x T = 50000 m

3
/s, it can be seen that the maximum 

discharge exceeded this level nine times during the period of record, with recurrence intervals ranging from 1 year to 16 
years, as shown in table 2

Table 2: Years with annual maximum discharge equalling or exceeding 50000 m
3
/s and the corresponding recurrence 

intervals

Years were 50000 is exceeded 1966 1970 1971 1972 1988 1991 1997 2002 2007 Average

Recurrence interval   4 1 1 16 3 6 5 5 5.1

 

The return period T of the event X >= x T is the expected value of t, E(t), its average value measured over a very large 
number of occurrences. For the data, there are 8 recurrence intervals covering a total period of 41 years between the 
first and last exceedance of 50000 m

3
/s, so the return period of a 50000 m

3
/s annual maximum discharge is 

approximately T = 41/8 = 5.1 years. Thus the return period of an event of a given magnitude may be defined as the 
average recurrence interval between events equal or exceeding a specified magnitude. 

The probability p = P(X >= x T) of occurrence of the event X >= x T in any observation may be related to the return period 
in the following way. For each observation, there are two possible outcomes: either "success" X >= x T (probability p) or 



"failure" X < xT (probability 1-p). Since the observations are independent, the probability of a recurrence interval of 
duration T is the product of the probabilities of t-1 failures followed by one success, that is, (1- p)

t-1
.p.

Assuming that the series of data is infinite, the E(T) can be expressed as:

 Eq 1

Developing this expression in terms and after some algebra:

 Eq 2

Therefore, the probability of occurrence of an event in any observation is the inverse of its return period.

 Eq 3

For example, the probability that the maximum discharge will equal or exceed 50000 m
3
/s in any year is approximately 

p= 1/t= 1/5.1= 0.195 (19.5%)

Suppose a certain flood (F) has a probability of occurrence of 10% - meaning a probability of 10% that this flood level 
will be reached or exceeded.

In the long run, the level would be reached on the average once in 10 years. Thus the average return period T in years 
is defined as:

 Eq 4

and the following general relations hold:

 

The probability that F will occur in any year:

 Eq 5

The probability that F will not occur in any year



 Eq 6

The probability that F will not occur in any of n successive years

Eq 7

The probability R, called risk, that F will occur at least once in n successive years

Eq 8

Extreme value distributions

A large amount of process events in hydrology are right skewed, leading to differences between the mode, median and 
mean of their distributions (see figure 5).

Figure 5: Left: A normal distribution accurately describes facts in nature that apart evenly for a mean. Right: River 
discharges and rainfall are right skewed events. Their value cannot be lower than zero and extreme events might occur 

far from the average.

There are a number of influences that promote this characteristic right-skewness of recorded natural events:

1. Where the magnitude of given events is absolutely limited at the lower end (i.e. it is not possible 
to have less than zero rainfall or runoff), or is effectively so (i.e. as with low temperature 
conditions), and not at the upper end. The infrequent events of high magnitude cause the 
characteristic right skew.

2. The above-mentioned limitation of the lower magnitudes implies that as the mean of the 
distributions approaches this lower limit, the distribution becomes more skewed.

3. The longer the period of record, the greater the probability of observing infrequent events of high 
magnitude, and consequently the greater the skewness.

4. The shorter the time interval within measurements are made, the greater the probability of 
recording infrequent events of high magnitude and the smaller the skewness.
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5. Other physical principles tend to produce skewed frequency distributions. For example the limited 
size of high intensity thunderstorms means that the smaller the drainage basin, the higher the 
probability that it will be completely blanked by heavy rain and this leads to an increase in 
skewness in the distribution of runoff as basin size decreases. Similarly, stream discharge 
frequencies are extremely skewed where impermeable strata allow little infiltration.

The right skewed distributions present certain problems of description and of inferring probabilities from them. When 
plotted on linear-normal probability paper, right skewed distributions appear as concave curves.

There are three methods to calculate the extreme value distribution in case of right skewness: Gumbel, Frechet and 
Weibull, see Fig 6. These methods are called the Extreme Value methods (EV’s)  and they are all based on one 
general equation called the General Extreme Value (GEV)  distribution. The extreme value transformation or double 
exponential transform is extensively used to straighten out cumulative plots of highly skewed distributions. The 
Generalized Extreme Value (GEV) distribution is a flexible three-parameter model that combines the Gumbel, Fréchet, and 
Weibull maximum extreme value distributions.

Figure 6: Gumbel, Frechet and Weibull extreme value distributions and the Generalized Extreme Value distribution.

The Gumbel distribution is a distribution with a light upper tail and it is positively skewed. It often underestimates the 
actual situation. Frechet gives a better estimation, but as three variables are needed for Frechet and just two for Gumbel, 
the Gumbel method is generally used. Frechet is a distribution with a heavy upper tail and infinite higher order moments.  
The Weibull distribution is a distribution with a bounded upper tail.  It used to estimate the drought. For this method, also 
three variables are needed.

Critical notes extreme frequency analysis

It is important to realize what exactly a return period (or recurrence interval) of 1:X years actually means. A 1:5 year 
storm means that on average over a long period, a storm of a given magnitude and duration is exceeded once every 5 
years. This does not mean that a 5-year storm will happen regularly every 5 years, or only once in 5 years, despite the 
connotations of the name "return period". In any given 5-year period, a 5-year event may occur once, twice, more, or not 
at all.

This can be explained as follows. Statistically the probability of a 1:5 year storm occurring is 0.2 per year, and therefore 
each year it has a probability of 0.8 of not occurring. If the storm hasn’t happened several years in a row, the probability 
that it will occur in the following year increases. If it hasn’t happened in 2 years, the probability of not occurring is 
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reduced to 0.8*0.8=0.64. If it hasn’t happened 5 years in a row, the probability of the storm not occurring has reduced to 
0.8

5
 = 0.33, and so forth. The probability that it will occur after 5 years of not occurring is 1-0.33 = 0.67. In other words, 

there is a 67% chance that a 1:5 year storm occurs after the next 5 years. Continuing this reasoning it is 99% certain 
that such a storm will happen within the next 20 years.

The statistical methods discussed are applied to extend the available data and hence predict the likely frequency of 
occurrence of natural events. Given adequate records, statistical methods will show that floods of certain magnitudes 
may, on average, be expected annually, every 10 years, every 100 years and so on. It is important to realize that these 
extensions are only as valid as the data used. It may be queried whether any method of extrapolation to 100 years is 
worth a great deal when it is based on (say) 30 years of records. Still more does this apply to the '1000 year flood' and 
similar estimates. As a general rule, frequency analysis should be avoided when working with records shorter than 10 
years and in estimating frequencies of expected hydrologic events greater than twice the record length.

Another point for emphasis is the non-cyclical natural of random events. The 100-year flood (that is, the flood that will 
occur on average, once in 100 years) may occur next year, or not for 200 years or may be exceeded several times in 
the next 100 years. The accuracy of estimation of the value of the (say) 100-year flood depends on how long the record 
is and, for floods, one is fortunate to have records longer than 30 years. Notwithstanding these warnings, frequency 
analysis can be of great value in the interpretation and assessment of events such as flood and the risks of their 
occurrence in specific time periods.

Additional Resources:

EasyFit: EasyFit allows to automatically or manually fit a large number of distributions to your data and 
select the best model in seconds. It can be used as a stand-alone application or with Microsoft Excel, 
enabling you to solve a wide range of business problems with only a basic knowledge of statistics.
RStudio. RStudio has an extreme value analysis package called "extRemes" (Gilleland, 2015). Two 
functions contained in this package were used for the analysis namely: Fit an Extreme Value 
Distribution to Data (FEVD) and Likelihood-Ratio Test (LR.test). The FEVD function can be used to fit 
the data into GEV distribution model or Gumbel distribution model. As an output, it gives different set 
of plots such as: QQ and QQ2 plots of the empirical quantiles against model quantiles, histograms of 
the data against the model density, return period plots of the return period against the rainfall with 95 
percent confidence intervals, etc. The LR.test function tests the likelihood ratio of two model fits and 
indicates which model has a greater fit.
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